

|            | Implementation schedule                                               | Physically/ remotely | Contact hours | Autonomous work for students (max hours) | Learning outcomes                                                                              |
|------------|-----------------------------------------------------------------------|----------------------|---------------|------------------------------------------|------------------------------------------------------------------------------------------------|
| Activity 1 | Introduction to Computational Modeling in Fish and Seafood Processing | Remotely             | 4             | 5                                        | Understand basic principles of computational modeling applied to fish and seafood processing   |
| Activity 2 | Numerical Methods for Engineering Problems in Seafood Processing      | Remotely             | 4             | 11                                       | Apply numerical methods to solve engineering problems related to seafood processing operations |
| Activity 3 | Regression Analysis and Data Modeling of Seafood Processing Data      | Remotely             | 4             | 11                                       | Analyze experimental data from fish and seafood processes using regression techniques          |
| Activity 4 | Simulation and Optimization Using EXCEL                               | Remotely             | 3             | 12                                       | Use EXCEL for simulation and optimization of seafood processing parameters                     |
| Activity 5 | Scientific Writing for Computational Assignments                      | Remotely             | 3             | 12                                       | Develop scientific writing skills through structured computational assignments                 |
| Activity 6 | Data Analysis and Presentation of Computational Results               | Remotely             | 6             | 12                                       | Develop presentation skills by communicating computational results effectively                 |
| Activity 7 | Integrated Case Studies in Fish and Seafood Processing                | Remotely             | 3             | 12                                       | Integrate computational tools to evaluate and compare alternative seafood processing scenarios |

|                    |                                                                                    |                       |           |           |                                                                                                                  |
|--------------------|------------------------------------------------------------------------------------|-----------------------|-----------|-----------|------------------------------------------------------------------------------------------------------------------|
| <b>Activity 8</b>  | Student Presentations on Computational Applications in Fish and Seafood Processing | Remotely / Physically | <b>3</b>  | <b>20</b> | Enhance proficiency in written and oral communication within the field, using specialized scientific terminology |
| <b>Total Hours</b> |                                                                                    |                       | <b>30</b> | <b>95</b> | <b>125</b>                                                                                                       |