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1. Executive summary

This document outlines the selection of existing data-intensive models and tools relevant to digital twin
technologies, particularly in the context of the EU-CONEXUS ENABLES project. It emphasizes the
importance of digital twins in various sectors, including the built environment, agriculture, and life
sciences.

Digital twins are virtual replicas that simulate real-world systems, allowing for real-time monitoring,
predictive maintenance, and enhanced decision-making. The report discusses how these technologies
can optimize operations, improve sustainability, and facilitate knowledge transfer among partners
involved in the project. Key areas of focus include the integration of data from sensors and loT devices,
which enables better management of resources and infrastructure.

The document emphasizes the importance of knowledge transfer from non-widening partners,
highlighting their initiatives in developing digital twin models that integrate real-time data, simulations,
and predictive analytics. Some chapters involve reviewing existing digital twin models and tools to
identify those that align with the project goals and have the potential to be transferred and replicated.

Overall, the framework serves as a guide for leveraging digital twin technologies to address specific
challenges and enhance knowledge sharing across various domains.

2. Introduction

This document is organized into several key sections that systematically address the selection and
application of data-intensive models and tools relevant to digital twin technologies within the context
of the EU-CONEXUS ENABLES project.

Specific applications of digital twins are presented in the sections, starting with the Built Environment,
which explores how digital twins can enhance infrastructure management and urban planning. This is
followed by a detailed examination of Agriculture and Life Sciences and Medical Applications,
highlighting the transformative potential of digital twins in optimizing agricultural practices and
improving healthcare outcomes.

The document also includes a Comparison of Tools utilized across these sectors, providing insights
into the commonalities and differences in their implementation. Additionally, it discusses Models
Used in Digital Twins, focusing on the methodologies that support these technologies.

A dedicated section on Digital Twin Models Identified in Non-Widening EU-CONEXUS Partners show
initiatives from various partners, emphasizing collaborative efforts in developing digital twin
applications. The document concludes with a Conclusion that synthesizes the insights presented and
reflects on the implications for future research and practice.

Overall, the structured approach of the document facilitates a comprehensive understanding of digital
twin technologies, their applications, and the collaborative frameworks necessary for effective
knowledge transfer among partners.
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3. Built Environment in Digital Twins

The built environment refers to the physical surroundings in which people live, work, and interact,
including buildings, infrastructure, and public spaces. In the context of digital twins, the built
environmentis represented as a digital replica that simulates the real-world properties, conditions, and
behaviors of these structures. By integrating data from sensors, loT devices, and other sources, digital
twins of the built environment enable real-time monitoring, predictive maintenance, energy
optimization, and enhanced decision-making for managing infrastructure and urban spaces more
efficiently. This digital representation allows for better planning, management, and sustainability of
cities and buildings.

3.1. Digital Twin Examples in the Built Environment

Structural Design Management

DT can be used to improve the design, construction monitoring and maintenance of structures. In this
case, digital twins can be used to create a 3D model of the building and update it using real-time data.
This will allow the engineers and managers to simulate, analyze and optimize the design of the structure
by making their decisions based on up-to-date data. Currently, the most widely used models for
structural design are Building Information Models (BIM) and Computer Aided Design (CAD) models. DT
can provide the following depending on the desired output:

e Virtual Construction Sequencing

e Cost and Schedule Optimization

e Condition Assessment

e Predictive Maintenance

e | oad and Stress Analysis

o Energy Efficiency and Sustainability

e Structural Performance Over Time
Thus, engineers have a great amount of control over the design and physical performance of the
structure.

Energy Desigh and Energy Management

Digital twins provide a virtual model that can simulate and optimize energy consumption patterns,
environmental impact, and the integration of renewable energy sources in a building or infrastructure
before physical construction. The focus here is on design optimization to improve energy efficiency. In
the planning and design stage of buildings or infrastructure, digital twins can simulate various energy
consumption scenarios based on architectural layouts, materials used, building orientation, climate
conditions, and occupancy patterns. Thus, energy design and management need to be done in
combination with structural design for optimal building performance in terms of both energy and
load/stress. Potential usage of DT in Energy design and management are as follows:

e Simulating Energy Consumption in the Design Phase
e Optimizing Building Orientation and Architecture
e |ntegrating Renewable Energy Sources
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e Real-time Energy Monitoring and Control

e Predictive Maintenance of Energy Systems
e Demand Response and Grid Integration

e Carbon Emissions Monitoring

Facility Management

Digital twins are increasingly being used in facility management (FM) to enhance operational efficiency,
reduce costs, improve sustainability, and optimize space utilization. By creating a real-time virtual
model of a facility, a digital twin helps facility managers monitor, manage, and improve the performance
of buildings, equipment, and infrastructure. By integrating real-time data from loT sensors within a
building to continuously monitor environmental conditions, energy usage, equipment status, and
occupant behavior, the twin reflects the live status of all building systems, including HVAC, lighting,
water systems, and security. For FM, occupancy modeling is especially useful for simulating the
behavioral patterns of the occupants in the building to optimize the working space and energy
expenditure. Most popular modeling technique used for this is Agent-Based Modelling (ABM). The
following can be achieved for FM by using DT:

e Building Performance Monitoring

e Centralized Control of Building Systems

e Space Usage Analytics

o Flexible Space Management

e Asset Tracking and Lifecycle Management
e Energy Optimization

e Occupant Experience and Comfort

Sustainability Management

Digital twins are a powerful tool for sustainability management, helping organizations and cities
monitor, optimize, and reduce their environmentalimpact. From tracking carbon footprints and energy
use to optimizing water consumption and waste management, digital twins enable smarter decision-
making that drives sustainability goals. By simulating and analyzing the environmental effects of various
actions, they support organizations in achieving long-term sustainability while reducing costs and
enhancing resilience. Sustainability management is included through each stage of the lifecycle of a
building (Design, construction, operation, demolition) thus, a few different modeling techniques and
tools are necessary to use digital twins in sustainability management. Different stages require different
tools and models to be observed, demonstrated and evaluated. An extensive list of tools is currently
used for sustainability management. The following are achieved by using DT in sustainability
management:

e Real-time Carbon Emissions Tracking

e Scenario Simulations for Carbon Reduction

e Energy Optimization and Monitoring

e Renewable Energy Integration

e Water Resource Simulation and Management



@ “CONEXUS g Fundedby
ENABLES O the European Union

e Waste Tracking and Management

o Lifecycle Assessment and Circularity

e Smart City Energy and Resource Management
e Traffic and Emission Management

e Environmental Impact Assessment (EIA)

Safety Management

For safety management, digital twins provide a way of simulating different loads and stresses in the
built environment to find out the safe operating range. Digital twins track the condition of buildings,
bridges, and other infrastructure in real-time. Sensors embedded in structures can monitor stress,
strain, temperature, and vibration, which are critical for detecting early signs of wear or potential failure,
such as cracks or instability. It is also possible to perform risk assessment and evacuation/hazard
procedures by using digital twins. The tools included are usually related to the 3d design aspect of the
built environment as well as sensors and loT devices to collect and connect data in one cloud. The uses
of DT in safety management are as follows:

e Real-Time Monitoring and Risk Detection

e Simulation of Emergency Scenarios and Evacuation Plans
e Predictive Maintenance and Inspections

e Resilience and Disaster Recovery

e Occupant Safety and Behavior Tracking

o Energy and Fire Risk Management

e Post-Incident Analysis and Recovery

Smart city/smart building management

A smart building uses its intelligence to collect actionable data from user devices, sensors, systems,
and services on the premises. The smart city does the same thing on a larger scale. Digital twins track
the performance of HVAC systems, elevators, lighting, and security systems in a building. This enables
building managers to monitor operational health, detect potential failures, and schedule preventive
maintenance before equipment breaks down, reducing downtime and enhancing safety. In urban
environments, digital twins of bridges, roads, water pipes, and other infrastructure assets monitor their
condition in real-time. They help predict when maintenance is needed, preventing costly repairs and
ensuring public safety. For example, sensors embedded in roads can alert authorities about potholes
or structural damage. Currently, the most used models are physics-based, agent and computational
fluid dynamics models. The following are the current uses for DT models in safety management

e Real-Time Monitoring and Predictive Maintenance
e Simulation of Urban and Building Environments

e Energy Management and Sustainability

e |Improving Public Safety and Security

e Urban Planning and Development

e Sustainability and Environmental Management
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Construction Management (refers to the construction stage of a project)

Digital twins are used to transform construction management by providing real-time insights, improving
safety, optimizing resources, and enhancing collaboration. DT extends the capabilities of Building
Information Modeling (BIM) by integrating real-time data with 3D models. These models evolve with the
construction process, allowing teams to visualize changes and updates in real time. The simulation of
different construction scenarios is enabled such that various design alternatives, material choices, or
construction methods can be tested. Project stakeholders can test and visualize the impact of these
decisions before implementation. From design and planning through construction to post-completion
facility management, DTs enable better decision-making, reduce risks, and improve overall efficiency.
Platforms like Autodesk Forge, Siemens MindSphere, Bentley iTwin, and Trimble Connect are at the
forefront of this revolution, making construction projects smarter, safer, and more sustainable. The
following are the potential and common uses for DT in construction management.

e Design and Planning Optimization

e Real-Time Monitoring and Progress Tracking

e Predictive Maintenance and Asset Management
e Safety Management and Risk Mitigation

e Project Scheduling and Optimization

e Collaboration and Communication

e Environmental Impact and Sustainability

Transport Management

In transport management, to optimize traffic flow, enhance safety, reduce emissions, and improve
overall efficiency. In the context of smart cities, they serve as real-time virtual replicas of transportation
systems, such as road networks, rail systems, airports, and public transit. By integrating real-time data
from sensors, cameras, and vehicles, digital twins allow authorities and planners to simulate and
optimize transportation operations. Thus, transport management can be seen as a subcategory of
smart city management. It provides city planners, and logistics operators with a powerful tool to
improve safety, efficiency, and sustainability in modern urban and transport systems. Usually, the
models used are agent-based models paired with a 3d model for visualization of infrastructure and the
roads/pathways. Here are the most common current uses of DT in Transport Management. [1]

e Traffic Flow Optimization

e Public Transportation Management

e Autonomous Vehicles and Smart Mobility
e Rail and Metro System Optimization

e Aviation and Airport Management

e Emergency and Incident Management
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Figure 1. Digital Twin Practices in Built Environment

3.2. Tools Used for Built Environment

In the context of Digital Twins, a tool refers to the technologies, platforms, and software applications
used to create, maintain, analyze, and interact with a digital twin. Digital twins are virtual models or
simulations that replicate physical objects, systems, or processes in real time, and tools are essential
for bridging the gap between the physical and digital worlds. In the built environment, 6 types of tools
are used most frequently. These are sensors, loT devices, data transmission, data storage and
processing, simulation and modeling, machine learning and predictive tools.

3.2.1. Sensors

A sensor is a device that detects, measures, and records physical properties from its surrounding
environment, converting these properties into readable data that can be processed and analyzed.
Sensors can measure a wide range of physical variables, such as temperature, pressure, motion,
humidity, light, sound, force, and more. There are several types of sensors used for the creation of
digital twins. These include temperature, flow, pressure, vibration, humidity, current, voltage, stress
and strain sensors. These sensors collect information on real-time data about physical assets,
systems, and environmental conditions. These sensors play a critical role in creating accurate digital
representations of energy assets, such as power plants, wind turbines, and electrical grids, by feeding
data into digital twin models for monitoring, control, and predictive maintenance. So, sensors are the
vital link between the physical and digital worlds in a digital twin system. They enable real-time data
collection, which keeps the digital twin up to date, allowing for monitoring, analysis, prediction, and
optimization of the physical system or asset. Sensors are also integral parts of loT devices like smart
meters. [2]

3.2.2. loT Devices
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An |oT (Internet of Things) device is a physical device that is embedded with sensors, software, and
communication technology, enabling it to collect data from its environment and transmit that data over
the Internet or other networks. These devices can range from simple household gadgets like smart
thermostats to complex industrial machines that monitor production processes. loT devices
communicate with other devices, systems, or applications, creating a network of connected objects
that can share information and work together. In the context of digital twins, loT devices play a critical
role in facilitating real-time data transfer from the physical object, environment, or system to its digital
counterpart. They are responsible for providing the data that keeps the digital twin synchronized with
its physical counterpart. By embedding loT devices in physical assets (such as machines, vehicles, or
infrastructure), a continuous stream of data is sent to the digital twin, enabling real-time monitoring,
analysis, and decision-making.[3]

3.2.3. Data Transmission

A data transmission tool is any technology, protocol, or system used to transfer data from one location
to another. This can include a variety of methods, such as wireless communication, wired networks, or
cloud-based systems. In the context of digital twins, data transmission tools are crucial for ensuring
that the real-time data collected by sensors and |oT devices is reliably transmitted to the digital twin for
processing, analysis, and updates. In a digital twin environment, data transmission tools facilitate the
flow of information between the physical object (or system) and its virtual counterpart. These tools
enable seamless and continuous communication between sensors, loT devices, edge devices, and the
digital twin platform. Data transmission can occur over the internet, through cellular networks (e.g., 4G,
5G), via satellite, or through local networks (e.g., Wi-Fi, Ethernet, or Bluetooth).[4]

3.2.4. Data Storage and Processing

A data storage and processing tool is any system, platform, or technology that enables the collection,
organization, management, and analysis of large volumes of data. In the context of digital twins, these
tools are critical for storing the vast amounts of data generated by sensors, loT devices, and other data
sources, and for processing this data to extract meaningful insights. In a digital twin environment, data
storage and processing tools play a pivotal role in managing the continuous inflow of data from the
physical asset or system and enabling real-time analysis, simulations, and decision-making. They
ensure that data is securely stored and efficiently processed so that the digital twin can perform its
functions, such as monitoring, predicting, and optimizing the behavior of its physical counterpart.[5]

3.2.5. Simulation and Modelling

A simulation and modeling tool is a software application or platform that allows the creation, testing,
and analysis of virtual representations (models) of physical objects, systems, or processes. These tools
enable users to replicate real-world behaviors in a digital environment, allowing for experimentation
and scenario testing without affecting the actual physical system

In a digital twin, simulation and modeling tools serve as the backbone for building, analyzing, and
enhancing the virtual representation of a physical object or system. They help in creating a realistic,
data-driven model of the asset, which can then be used to simulate real-world conditions, test potential
changes, and predict future states. Simulation and modeling tools integrate data from various sources
(such as sensors, loT devices, and historical records) into the digital twin, allowing for dynamic
simulations that evolve with the real-time condition of the physical asset.[6]
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3.2.6. Machine Learning and Predicting

A machine learning (ML) and predictive tool is a software or platform that uses data-driven algorithms
and statistical models to identify patterns, make predictions, and generate insights. These tools learn
from historical and real-time data to improve decision-making, automate processes, and anticipate
future outcomes. In the context of digital twins, ML and predictive tools are vital for enabling the digital
twin to forecast the behavior of physical systems, optimize performance, and detect anomalies. In a
digital twin, machine learning models analyze large datasets, which often come from sensors and loT
devices monitoring the physical object. These tools allow digital twins to evolve beyond static
representations into intelligent systems capable of self-improvement, predictive maintenance, and
real-time optimization. ML and predictive tools continuously refine their models based on new data,
allowing the digital twin to improve over time. By using historical and real-time data, digital twins can
make accurate predictions about future states, detect potential failures, and suggest optimal
strategies for improving performance. [7]
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Figure 2. Tools Used for Built Environment
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3.3. Case Studies in Built Environment

This section includes digital twin technology used in 4 different case studies in the built environment.
The tools used are explained for each case study and a table is presented at the end to visualize the
differences and similarities between them.

= Khatib & Alami, Digital Twin of Muscat (Smart city infrastructure)

By combining GIS, BIM, predictive analytics, loT sensors, real-time monitoring, Al, and cloud-based
platforms, Khatib & Alami's digital twin for Muscat was designed to provide comprehensive urban
management solutions. The digital twin helps improve security, flood preparedness, and overall city
infrastructure resilience. Drones were employed to take aerial images of the city to map the geography
and the position of the buildings in the city. loT sensors were employed to enable real-time data
collection and monitoring across the city’s infrastructure. These sensors provided critical insights into
the operations of urban systems such as traffic management, utilities, water networks, and
environmental conditions. Esri ArcGIS was used for integration of geographical real-time data into the
digital twin. Bentley's LumenRT was then employed to animate the digital twin, enabling simulations
such as flooding and day/night cycles for real-world scenario planning, helping the governmentimprove
preparedness for climate-related disasters and secure strategic areas. [8]

= AEGEA, Brazil’s Largest Sanitation Map (Sanitation and utilities)

AEGEA is a leading private company in Brazil's sanitation sector, and it is behind the creation of the
country’s largest and most comprehensive sanitation map, designed to improve water supply, sewage
treatment, and overall sanitation infrastructure. A digital twin of the city and water-based infrastructure
was created. The digital twin leverages a digital tool called ContextCapture and Bentleys open modeling
tools for processing over 150000 photos and generating a 3D reality mesh. Real-time data is fed into the
system using various sensors to detect water level and quality. ContextCapture uses photogrammetry
to convert 2D images into 3D models. It processes aerial photos, drone footage, or ground-level images
to generate accurate representations of physical environments. ContextCapture models are used
within Bentley’s iTwin Platform, which is a comprehensive digital twin environment. iTwin allows users
to collaborate, analyze, and visualize digital twins in real time, using data generated from
ContextCapture models as a baseline. [9][10][11]

= The Edge, Deloitte HQ, Amsterdam (Smart building and energy efficiency)

The Edge, Deloitte’s headquarters in Amsterdam, is renowned for being one of the world’s smartest and
most sustainable buildings. The digital twin of The Edge integrates advanced technologies and data-
driven methods to manage the building's operations efficiently. The tools used include a wide range of
loT sensors that were embedded throughout the building to capture real-time data on occupancy,
temperature, humidity, lighting, and energy consumption. The digital twin is tightly integrated with the
Building Management System (BMS), which controls key mechanical and electrical systems such as
HVAC (Heating, Ventilation, and Air Conditioning), elevators, and lighting. Siemens Building Automation
systems and Schneider Electric's EcoStruxure are the tools used that are designed to optimize energy
use and comfort. Data collected from sensors and the BMS is analyzed using advanced analytics and
machine learning algorithms. The specific tool used is Microsoft Azure, which acts as the cloud
platform for storing and processing the building’s data, enabling real-time analytics and historical data
analysis. A 3D Building Information Model (BIM) is used to create a digital representation of the physical
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structure of The Edge. Autodesk’s Revit was used for BIM modeling, as itis commonly used for creating
architectural and MEP (mechanical, electrical, plumbing) models. To handle the massive data flows
generated by the sensors, cloud and edge computing solutions are used to process data efficiently and
in real time. Microsoft Azure Cloud is central to The Edge’s digital twin for storing, processing, and
analyzing large volumes of data. [12]

= Bristol City Leap Smart Buildings (Energy management for public buildings)

The Bristol City Leap project is a large-scale initiative aimed at decarbonizing the city of Bristol, UK, by
implementing smart building technologies, including digital twins. The digital twin aspect of this project
involves creating virtual replicas of municipal buildings to optimize energy use, improve sustainability,
and reduce carbon emissions. Sensors used include devices for monitoring energy consumption,
environmental conditions (temperature, humidity, air quality), occupancy, and equipment status (e.g.,
boilers, HVAC units). The digital twin integrates with the building management systems to control
critical infrastructure like HVAC, lighting, and electrical systems. Schneider Electric BMS platforms
were used that can interface with loT networks, enabling real-time control and automation. For energy
management, platforms like Schneider Electric's EcoStruxure specifically designed to support energy
efficiency were used to meet the sustainability goals. 3D BIM is used to create a detailed virtual
representation of the building, which includes architectural, structural, and operational data. Autodesk
Revit was the tool employed for this function. For cloud computing and edge processing, Microsoft
Azure loT was used where it provides the cloud infrastructure for processing and storing building data.
It enables real-time monitoring, predictive maintenance, and historical analysis of building
performance. For integration, Microsoft Azure Digital Twins was used as a comprehensive platform that
integrates loT devices, Al models, and BIM data to create a dynamic digital twin for smart buildings. [13]

= Johnson Controls Headquarters, Shanghai, China (Facility Management)

The Johnson Controls Headquarters in Shanghai, China is a state-of-the-art smart building that
integrates digital twin technology to enhance energy efficiency, sustainability, and occupant comfort.
As a global leader in smart buildings and sustainability, Johnson Controls leverages advanced loT, Al,
and machine learning technologies within its headquarters to create a highly connected, data-driven
building environment. This digital twin implementation aligns with Johnson Controls' OpenBlue
platform, a suite of connected solutions aimed at optimizing building performance and reducing
environmental impact. The headquarters is a prime example of how digital twins can contribute to
smart building management, sustainability, and energy optimization.

Key Features of the Digital Twin Implementation:

1. Building Management Optimization: The digital twin platform monitors and manages various
building systems like HVAC, lighting, energy consumption, and occupant behavior in real-
time. By continuously gathering data from a network of loT sensors, the digital twin creates a
dynamic virtual model of the building that helps optimize operations and reduce energy waste.

2. loT-Enabled Devices: The building utilizes an extensive array of smart sensors and loT devices
to track temperature, humidity, air quality, occupancy, and energy consumption. These devices
communicate through Wi-Fi, Zigbee, and other protocols to a central management system,
providing real-time insights into the building’s performance.

3. Al and Machine Learning: Al-powered algorithms are used to predict building energy
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demands, optimize resource consumption, and schedule predictive maintenance. By analyzing
historical data and forecasting patterns of use, the digital twin can adjust HVAC, lighting, and
other systems proactively, reducing operational costs and improving sustainability.

4. Energy Efficiency and Sustainability: One of the main goals of the digital twin is to enhance
energy efficiency. By simulating different operational scenarios, the twin enables energy
savings by optimizing system performance in response to external factors like weather and
internal factors like occupancy.

5. Occupant Comfort: Through real-time occupancy sensing and predictive algorithms, the
building automatically adjusts temperature, lighting, and air quality to ensure optimal comfort
for occupants while minimizing unnecessary energy use.

6. Edge and Cloud Computing: Data collected from loT devices is processed using a combination
of edge computing for immediate, local responses and cloud computing for large-scale data
analysis and predictive modeling. [14]

= Siemensstadt 2.0, Berlin, Germany (Smart City Management)

Siemensstadt 2.0 in Berlin, Germany is an ambitious smart city project initiated by Siemens,
transforming the historic Siemensstadt district into a modern urban innovation hub. The project,
spanning over 70 hectares, integrates digital twin technology, IoT, and Al to create a connected and
sustainable living environment. Siemensstadt 2.0 is envisioned as a center for smart industry,
education, and research, while promoting green technologies and energy efficiency.

For the creation of a digital twin, Siemensstadt 2.0 utilizes tools like Siemens MindSphere, a cloud-
based loT operating system, for gathering and analyzing data from a vast network of sensors and loT
devices. Building Information Modeling (BIM) is used to develop detailed digital representations of
buildings and infrastructure, allowing for simulations of energy usage and urban planning. Edge
computing ensures real-time data processing at the source, minimizing latency in decision-making,
while Al-driven predictive analytics help optimize the performance of energy grids and building
management systems by anticipating future demands and failures. This combination of advanced tools
enables the creation of dynamic, responsive models that support the sustainable management of
Siemensstadt. [15, 16].

= Forth Bridges Digital Twin Project, Scotland (Smart City Infrastructure)

The Forth Bridges Digital Twin Project is a Scottish initiative that creates a digital replica of the three
iconic Forth bridges—Forth Rail Bridge, Forth Road Bridge, and Queensferry Crossing. This digital twin
uses advanced 3D modeling and sensor data to mirror the real-time conditions of the bridges, allowing
for efficient monitoring, predictive maintenance, and improved safety management. By simulating
structural responses to environmental factors like weather and traffic, the project enhances
infrastructure management, reduces operational costs, and supports the longevity and resilience of
these critical transport links.

The Forth Bridges Digital Twin Project employs a sophisticated array of tools for creating a detailed and
functional digital twin. The use of advanced sensors (e.g., strain gauges, accelerometers), loT platforms
(like Libelium Waspmote), and data transmission technologies (5G, LoRaWAN) ensures real-time
monitoring. Data storage and processing take place in Microsoft Azure, while simulation and modeling
tools like Autodesk InfraWorks and ANSYS allow detailed simulations. Finally, predictive maintenance
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is powered by machine learning and Al tools such as TensorFlow and Azure Machine Learning, providing
a comprehensive digital twin solution for ensuring the long-term safety and functionality of the bridges.
[17, 18]

= Ezhou Huahu International Airport (Construction Management)

China utilized Bentley Systems' iTwin platform and BIM technology to create a comprehensive digital
twin. This project had to manage 25 million model components and multiple stakeholders across
various disciplines. The digital twin facilitated efficient collaboration, reducing delivery times by 90 days
and saving $12 million. By integrating real-time data and workflows, the digital twin improved
productivity by 25% and solved thousands of operational issues, which saved an additional $300
million. This helped in achieving lifecycle management and optimized project coordination and
execution.

The digital twin for Ezhou Huahu International Airport was developed using Bentley Systems’ tools,
specifically the iTwin Platform for integrating massive datasets, including 25 million model
components. This platform allowed for a cohesive, real-time collaborative environment that managed
the airport’s lifecycle from design to operation. OpenRoads was used for professional modeling,
ProStructures for structural coordination, and Navigator to ensure seamless collaboration with on-site
teams. Together, these tools streamlined multi-source data handling, reduced model delivery times by
90 days, and enhanced productivity by 25%, allowing the team to address thousands of coordination
issues and save approximately $300 million [19, 20].

= Digital Twin Setup in the Roma Termini Railway Station (Safety Management)

The case study focuses on developing a simulation-based digital twin (DT) for Roma Termini railway
station to enhance pedestrian safety and crowd management. This DT leverages real-time data from
loT-enabled devices like security gates, escalators, and ticket machines, integrating them through a
Station Management System (SEM) that collects and processes live data. Using AnyLogic software, the
DT simulates pedestrian flows, predicts congestion, and provides early warnings and evacuation
recommendations. It dynamically adjusts to real-world conditions, enabling proactive decision-making
for station managers to manage crowd safety effectively, optimize gate configurations, and allocate
resources based on crowd density and flow patterns. [21]

Sensors and loT Devices: The system utilizes security gates, escalators, and ticket machines as loT-
enabled devices to gather data on passenger flows and asset status. The Station Management System
(SEM) integrates these physical assets, providing data on gate status, escalator functionality, and
platform occupancy.

Data Transmission: The system leverages RESTful APls and WebSockets to facilitate data exchange,
using formats such as JSON, XML, RDF, and CSV to standardize communication across the station's
digital and physical components.

Data Storage and Processing: A Data Integration Middleware layer aggregates and processes data
from various station systems, ensuring interoperability between the simulation engine, incident
management, and operational management systems.

Simulation and Modelling: AnyLogic is the primary tool for simulation, used here for crowd modeling
and congestion prediction. AnyLogic’s Pedestrian Library, Process Modeling Library, and Agent-based
Modeling Library enable detailed simulation of pedestrian flows and interactions, reflecting real-world
crowd dynamics.
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Machine Learning and Prediction: Although traditional machine learning is not employed for
prediction, AnyLogic’s simulation capabilities incorporate real-time updates from SEM. This integration

allows the digital twin to dynamically adjust predictions based on current crowd conditions, effectively
providing proactive safety insights.

3.4. Comparison of Case Studies
Johnson Controls Siemensstadt Forth Bridges Ezhou Huahu
Case Study Headquarters, 2.0, Berlin, Digital Twin International
Shanghai, China Germany Project, Scotland Airport, China
Laser Scanners
Occupancy, Humidity, Strain gauges, and LiDAR, GPS
Sensors Temperature, Temperature, Accelerometer, and Geolocation
Humidity, Air Lighting, Gas, Anemometer, Sensors,
Quality, Lighting CO2 Temperature, Load temperature,
humidity sensors
Smart HVAC SSSTear:SH\S/QZrt Libelium Smart
. Systems, Smart .y . ’ Waspmote loT Wearables,
loT Devices s Lighting Systems, .
Lighting, Energy platform, Cisco loT GPS Trackers,
Connected
Meters gateways Drones

Wi-Fi and Ethernet
Networks, igbee
and Bluetooth Low

Mobility Devices

5G Networks,
LoRaWAN

Data o | °CandLoRaWAN, | oRawaN, i-Fi
.. Energy, Building Protocol, Wi-Fi Fiber-optic
Transmission . amd Bluetooth.
Automation and Ethernet networks
Systems (BAS) Networks
Protocols
HBh;;?dc:It::ger Azure Blob
Data Storage = Cloud Computing | Cloud Computing . Storage, Data
. . Messtechnik),
and (Microsoft Azure), (Siemens . Lake, AWS
. . : Microsoft Azure . .
Processing Edge Computing MindSphere), Kinesis and Azure
Cloud, Azure Data .
Stream Analytics
Lake
Building Building Building
. Information .
Information Modeling (BIM) Information
Simulation Modeling (BIM).by Energy Modeling Modeling (BIM), OpenRoads,
. Autodesk Revit, Autodesk
and Modelling Software ProStructures,
EnergyPlus or . InfraWorks,
(Siemens PSS®
TRNSYS for energy Bentley Systems
. . SINCAL and
flow simulation ContextCapture
EnergyPlus)
Machine IBM Watson loT
Learning and OpenBlue Al Siemens Platform, Microsoft TensorFlow or
. g' Platform MindSphere Azure Machine PyTorch
Prediction

Learning

Tabel 1. lllustrates the tools and methods used in Johnson Controls Headquarters, Shanghai,
China Siemensstadt 2.0, Berlin, Germany Forth Bridges Digital Twin Project, Scotland Ezhou
Huahu International Airport, China.
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Sensors & loT: Johnson Controls uses its OpenBlue suite with extensive HVAC and security sensors to
optimize indoor air quality and energy use. Siemensstadt employs a network of sensors for urban-level
insights into energy, mobility, and sustainability, incorporating loT to monitor environmental and urban
conditions. For Forth Bridges, sensors track structural integrity, including stress and weather data to
manage bridge health and safety. Ezhou Huahu Airport integrates sensors for real-time logistics and
operational monitoring, essential for managing high-traffic airports.

Data Transmission & Storage: Both Johnson Controls and Siemensstadt rely on cloud-based
solutions. OpenBlue’s real-time platform provides Johnson Controls with continuous updates, while
Siemensstadt leverages Siemens’ cloud to centralize smart city data. The Forth Bridges project uses a
cloud system by Digital Catapult for ongoing structural health, and Ezhou Airport combines edge and
cloud storage for rapid data access and storage.

Modeling & Simulation: Siemensstadt incorporates simulations for urban planning to design eco-
friendly structures and predict energy needs. Forth Bridges uses a digital model for predictive
maintenance on bridge conditions. Johnson Controls uses simulation within OpenBlue for energy and
space utilization, while Ezhou Airport models flight and passenger flow to maintain efficient airport
operations.

Machine Learning & Prediction: Machine learning in OpenBlue at Johnson Controls supports
predictive maintenance and adaptive environment management. Siemensstadt applies Al-driven
analytics to anticipate urban resource demands, and Forth Bridges uses Al to predict maintenance
needs, ensuring infrastructure safety. Ezhou Airport applies Al to manage logistical workflows,

predicting peak times and optimizing passenger processing.

Khatib & Alami, AEGEA, Brazil’s The Edge, Bristol Citv Lea
Case Study Digital Twin of Largest Sanitation Deloitte HQ, Smart Bui‘l,din :
Muscat0 Map Amsterdam g
. Energy Usage, Air
Cameras, Motion Occupanc %yualitg
Detectors, Air Smart Water Meter, pancy, v
. HVAC, Light, Temperature,
Sensors Quality and Flow, Water
. Temperature, Energy
Weather, Quality, Pressure o . .
o Humidity, Motion Consumption,
Electricity, Water
CO2
Smart meters for
. o oo Smart meters for
Smart city Smart sanitation building .
o real-time energy
sensors for real- monitoring management and R
. monitoring in
. time urban data systems, Water control systems, N
loT Devices . L . buildings, loT-
collection, Smart flow monitoring Devices for
s enabled
meters for and leakage lighting, HVAC,
s . thermostats,
utilities detection meters and occupancy .
. smart lighting
tracking
Cellular, Wi-Fi
’ ’ Wi-Fi, Bluetooth, Wi-Fi, LoRaWAN,
LoRaWAN for LoRaWAN, cellular .
Data Zigbee for cloud- | cellular networks
.. low-power, long- | networks for cloud-
Transmission .. based for cloud-based
range based transmission

transmission for

transmission

transmission
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The Edge,
Deloitte HQ,
Amsterdam

Bristol City Leap
Smart Buildings

Data Storage
and
Processing

Simulation
and Modelling

Machine
Learning and
Prediction

cloud-based
transmission

Cloud storage
(AWS, Azure) for
localized
databases for
infrastructure
metadata

Esri ArcGIS for

urban planning

simulations and
models

Al algorithms for
predictive
maintenance
(Python,
MATLAB)

Cloud storage
systems for vast
datasets (Azure) for
High-volume, high-
precision
databases for asset
data

Bentley
ContextCapture for
3D modeling and
Virtual reality (VR)
for asset lifecycle
management

Machine learning
for water loss
detection and

network
optimization

(Python, MATLAB)

Cloud storage
systems for vast
datasets
(Azure) for High-
volume, high-
precision
databases for
asset data

Autodesk Revit for
BIM, Siemens
Building
Automation
system for energy
simulation and
modelling

Machine learning
for energy
efficiency (Python,
MATLAB)

Cloud-based
storage
integrated with
smart building
systems

Autodesk Revit
for BIM,
Schneider
Electric's
EcoStruxure for
energy simulation
platforms for
forecasting and
optimization

Al for predicting
energy demand
and optimizing

building systems

(Python, MATLAB)

Tabel 2. lllustrates the tools and methods used in Khatib & Alami, Digital Twin of Muscat AEGEA,
Brazil’'s Largest Sanitation Map, The Edge, Deloitte HQ, Amsterdam, Bristol City Leap Smart

Buildings.

Sensors and loT Devices: All projects heavily rely on loT sensors for real-time data collection. Khatib
& Alami and AEGEA focus on urban and utility infrastructure, while The Edge and Bristol City Leap focus
more on building and energy management.

Data Transmission: Across all projects, Wi-Fi and cellular networks are essential for data
transmission. Low-power networks like LoORaWAN are used in Bristol and AEGEA for long-range and
energy-efficient transmission.

Data Storage and Processing: Cloud storage and processing are critical across the board, with AWS,
Azure, and other cloud platforms used to manage vast datasets in real time.

Simulation Tools: 3D modeling tools such as Bentley ContextCapture and Autodesk Revit for BIM
are used for simulating infrastructure and building management. These simulations optimize urban
planning in Muscat, energy efficiency in Edge and sanitation infrastructure in Brazil.

Machine Learning and Prediction: Al and machine learning are applied for predictive maintenance and
energy optimization. In Bristol and Edge these techniques are particularly focused on energy
forecasting and efficiency, while in AEGEA, they help identify water loss and optimize sanitation
services.
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4. Agriculture in Digital Twins

In the context of digital twins, agriculture refers to the use of digital replicas to simulate and monitor
farming systems, crops, and livestock. By integrating data from sensors, weather forecasts, soil
conditions, and machinery, digital twins enable farmers to optimize crop yields, manage resources
efficiently, and predict future outcomes. These digital models help improve decision-making in areas
like irrigation, pest control, and fertilizer application, leading to more sustainable and productive
farming practices. Ultimately, digital twins in agriculture enhance the precision and efficiency of
operations, contributing to smarter farming and better management of agricultural ecosystems.

Smart agriculture (SA), the increasing use of information technologies, sensors, autonomous vehicles,
data analytics, predictive modeling, and other digital technologies related to agricultural activities —has
been strongly argued for to significantly contribute to increased food security, reduced water
consumption, reduced fertilizer and pesticide input, and increased farm profitability. Despite this, the
adoption rate of smart agricultural technologies is still low and varies significantly according to the
specific technology and the geographical area considered [22]. Smart farming consequently is a
comprehensive approach to agriculture that utilizes a diverse range of technologies. It is necessary to
integrate tools such as the Internet of Things, artificial intelligence, and automation. When we talk
about automation, we need to understand all the processes in a complex agroecosystem. A SA creates
a sophisticated and interconnected farming ecosystem. Precision agriculture (PA) is a subset of SA. In
a broader sense (PA) is a farm management approach that necessarily leans on use of digital
techniques with a specific focus on monitoring and optimizing agricultural production processes.

To better monitor the inclusion of digital twins (DTs) in smart agriculture with a contribution towards its
sustainability, it is necessary to distinguish the development of agriculture from its beginnings to the
current stage through an approach from agriculture 1.0 to 5.0. (R)evolution of agricultural activities in
developed countries, which encompasses all the major technological innovations is listed below:

e Agriculture 1.0 (until 1920): manual workforce and animal traction.

e Agriculture 2.0 (1920-1960): motorization, introduction and dissemination of tractor innovations
(diesel engine, three-point hitch, tires), but manual workforce still prominent;

e Agriculture 3.0 (1960-1980): mechanization, improvement of tractors (higher power, operating
machines for all production activities), improvements in genetics, rapid replacement of the
manual workforce;

e Agriculture 4.0 (precision agriculture) (1980-2000): improvement of operating machines, greater
attention to the human-machine relationship (safety and ergonomics), the introduction of on-
board electronic control systems in tractors, first attempts of digitized/computerized
management of the farm (never fully and widely consolidated, except in specific sectors such as
zootechnics);

e Agriculture 5.0 (smart agriculture) (after 2000): consolidation of electronics and automation (in
mobile user-point processes), diffusion of sensors for monitoring activities and on-board
positioning systems in tractors, communication protocols between different devices, in-silico
simulations for gene modeling and traceability, deep learning to increase agricultural productivity
[22].

Agriculture 5.0 therefore throws consolidation of electronics and, sensors for monitoring activities and
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on-board positioning systems, communication protocols between different devices, here a new
perspective opens up, and that is how, based on known automated processes and collected large
amounts of data, an environment can be created in which predictions or future events (e.g. due to
climate extremes) could be simulated and prevented by decision-makers. A digital twins approach can
be the next step in developing SA as an Agriculture 5.0.

Digital twins provide previously unheard levels of control over physical entities and help to manage
complex systems by integrating an array of technologies. Recently, agriculture has seen several
technological advancements, but it is still unclear if this community is trying to adopt digital twins in its
operations [23].

Digital Twins serve as virtual counterparts, replicating the characteristics and functionalities of tangible
objects, processes, or systems within the digital space, leveraging their capability to simulate and
forecast real-world behavior [24]. This advanced digital technology has found different applications in
SF, facilitating a comprehensive virtualreplica of afarm. It can adapt and encompass vital aspects such
as: soil composition, weather conditions, crop cultivation measures, crop developing vegetation
phases. By joining data from diverse sources: soil, plant conditions, environmental and meteorological
sensor networks and high-resolution UAV and Satellite imagery, farmers gain access to dynamic and
up-to-date visualization of their agricultural domains. All this empowers them to make well-informed
and timely decision making. Farmers are more reliable in their soil conditions, irrigation plans, optimal
fertilization methods, and other cultivation measures, then effective pest management strategies, all
this is for the purpose of enhancing overall farm productivity and sustainability.

As virtual replicas of physical objects or systems, DTs represent a highly promising advancementin this
field. In SA, digital twins enable agriculture experts, researchers, and farmers to simulate various
scenarios, test different strategies, and predict outcomes accurately. DTs in smart farming offer
transformative possibilities, revolutionizing crop cultivation and management while enabling
optimization of resource utilization, minimizing environmental footprint, and enhancing crop yields for
a sustainable and efficient agricultural ecosystem [25]. In this context, the DT is uniquely positioned to
overcome these challenges and support the goals of sustainability. Through the use of state-of-the-art
technologies, increased information availability can empower stakeholders to pursue sustainable
objectives and production methods [26]. A DT can provide the following depending on the desired
output.

e Real-time monitoring and Predictive Maintenance (soil performance, weather influence,
agriculture measures implementing, culture development, harvest and post-harvest
maintenance)

e Sustainability and Environmental Management (biodiversity, soil fertility, environmental
pollution/degradation)

e Safety Management and Risk Mitigation (food safety, work safety, farmer's welfare, etc.)

e Project Scheduling and Optimization (decision support and socio-economic welfare of farmers,
farms and rural areas)

e Collaboration and Communication (improvements in responses to the demanding
administrative and development component of the common EU agricultural policy).

e DT can provide the following depending on the desired output.

The key components and interactions of DT in agriculture, important for their role in data collection,
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preprocessing, modeling, simulation, analytics, decision support, visualization, and control, with aim
in optimizing farm operations and improving decision-making processes are: technology for creating
reality, artificial intelligence (Al), communication technologies, the connection between the real twin
and the DT, distributed Ledger Technologies (DLT) and Blockchain, cloud, IoT, simulating software.

= Technology for creating reality

DTs rely on augmented (AR), virtual (VR), and mixed-reality (MR) technologies. As an example, they can
be created using three-dimensional (3D) technologies and presented as holograms or experienced
through AR/VR/MR devices, such as the Microsoft HoloLens. Using sensors installed in the field, their
real-time digital twin can be generated and projected as a hologram in remote locations. This enables
individuals in different locations to engage in interactions that simulate being physically present in the
same space [27].

= Artificial Intelligence

Artificial Intelligence (Al) integration into physical assets that lack itinherently is a key advantage of DTs.
This introduces a specialized intelligence capable of efficiently comprehending vast amounts of
numerical data and deriving domain-specific insights faster than human experts. Consequently, the
data obtained from the digital twin’s surroundings and physical counterpart should lead to valuable and
actionable conclusions [28].

= Communication Technologies and Schemes

DTs rely on communication technologies and schemes to facilitate interaction with the environment,
their physical twins, and other DTs on a real-time basis. Effective communication must occasionally
occur within a millisecond (ms) timeframe. This is particularly significant in the realm of wireless
communication. A necessitating compliance with 5G and tactile internet standards is needed. Then
another need for stringent communication standards, lead to a growing demand for repeatable and
cost-effective verification procedures [24].

= Reliability, Integrity, and Credibility

Reliability, integrity, and credibility are pivotal when DTs are entrusted with sensitive tasks involving
transaction management with their real counterparts. It becomes imperative for the real twin to
establish a sense of trust in their DT's capabilities and actions. Building and maintaining a solid
connection between the real twin and the DT is crucial to fostering effective collaboration, enabling
reliable decision-making, and ensuring secure interactions. Consequently, a strong foundation of trust
becomes indispensable for the successful operation and advancement of DT-enabled systems [29].

= Distributed Ledger Technologies and Blockchain

In recent times, Distributed Ledger Technologies (DLT), such as blockchain [30], have emerged to add
to user authentication and data integrity regarding data sharing. To unlock its full potential and achieve
its envisioned advantages, addressing outstanding concerns surrounding the technology is imperative.
DLT offers a decentralized approach that eliminates the need for a central authority or database,
distinguishing it from traditional data-sharing methods [30].

= Cloud Computing

Cloud computing presents a valuable opportunity for DTs to enhance their scalability and availability,
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assisting their real twins anytime and anywhere. By leveraging cloud computing infrastructures,
computation and control tasks can be offloaded from the local environment to remote servers, enabling
DTs to handle complex processes and ensure seamless availability efficiently. The scalability of DTs is
significantly improved through cloud computing, as the computational resources can be dynamically
allocated and scaled based on demand [24].

= Internet of Things

Internet of Things (loT) with 5G and the Tactile Internet (Tl) entity meanings have emerged as ground-
breaking technologies, ushering in a new era of communication with their focus on ultra-high reliability
and ultra-low latency. The Tactile Internet (Tl) is an emerging area of research involving 5G and beyond
(B5G) communications to enable real-time interaction of haptic data over the Internet between tactile
ends, with audio-visual data as feedback. This shift in communication paradigms from content-
oriented to control-oriented is especially significant for applications that involve human-in-the-loop
interactions, demanding minimal delays and seamless integration of communication and control
mechanisms as demanded in DT infrastructure [24].

= Modelling and Simulation Software

A DT could be addressed as a tight combination of (1) an object model, in conjunction with (2) an
expansive set of data that is directly following the object that may evolve, and finally, (3) a method for
modifying and refining the model based on the available data [31]. The experts decide the need and
selection of the training, validation and verification data concerning specific case studies, types of soil,
plant types, leaf area, plant height, regarding the Physical Twin, or technological use cases [24, 31].

4.1. Digital Twin Examples in Agriculture

Growth Prediction/Optimization

The first way to apply DTs in agriculture is to create a crop DT, which can for example predict growth or
yield (Laryukhin et al. 2019). Skobelev et al. (2020) integrated the ability to adapt to changing
environmental conditions. Decision supportis another topic that works as DTs (Moghadam et al. 2020).
The “Digital Potato” is a tool with which a potato harvester can be adjusted so that the potatoes are not
damaged during harvesting (Kampker et al. 2019). In addition, Barnard (2019) created a digital twin of
an indoor garden that calculates the ideal conditions for plants to grow. It uses the data gathered by a
gardening robot such as humidity and nutrient content of the soil as well as simulations to determine
what the robot has to do to ensure that each plant gets exactly the right quantity of nutrients and water
it needs for ideal growth. The data gathered, the algorithms and the digital twin itself are saved in the
cloud.

e Environmental adaptation

e Growth time and efficiency prediction
o Damage Prevention

e Harvest Efficiency

e Nutrition optimization

Water Quality Management
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DTs can be used in aquaculture or aquaponics for monitoring water quality (Niswar et al. 2018; Ahmed
et al. 2019). In aquaculture and aquaponics, digital twins are used to monitor water quality by
integrating real-time data from various sensors placed in water tanks or systems. These sensors
measure critical parameters such as temperature, pH levels, dissolved oxygen, salinity, and ammonia
concentrations, which are essential for maintaining a healthy environment for aquatic life. The digital
twin model simulates and visualizes these conditions in real-time, allowing for continuous monitoring
and early detection of potential issues. By leveraging data-driven insights, farmers can optimize water
quality, adjust filtration systems, and ensure the health of both fish and plants in aquaponic systems,
leading to more sustainable and efficient operations.

e Predict water quality changes

e Simulate water conditions

e Optimize filtration and aeration systems

e Track long-term water quality

e Detect potential danger signs
Livestock Wellbeing

Another study used a DT for the well-being of livestock by controlling the conditions in a barn (Jo et al.
2018). DTs can also be used for vertical farming (Monteiro et al. 2018). DTs can also be used in urban
areas. They were used for monitoring an underground urban farm and for urban beekeeping (Jans-Singh
et al. 2020; Johannsen et al. 2021). Another application was the digital twin of a cow that makes
predictions for heat, estrus and health according to its behavior. It is working based on data from a
pedometer attached to the cow as well as company provided location services that accurately detect
the cow’s movement Kruize (2018).

e Environmental condition monitoring

e Improve animal health

e Enhance comfort

e Predict health risks

e Optimize breeding

e Monitor behavior

e Support herd management
Unmanned Ground Vehicles

Tsolakis et al. (2019) created a digital twin to emulate the use of unmanned ground vehicles in fields. It
accepts the actuallandscape of afield as input by utilizing digital elevation models retrieved from Open
Street Maps. It recreates the 3D model of the field along with possible additions like trees and static
objects. It contains a predefined selection of commercially available unmanned ground vehicles which
a farmer can test on the virtual field to find the most efficient for their case.

e Emulate vehicle operation
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e Create Field Models
e Optimize UGV selection
e Improve operational efficiency
e Enhances decision making

Stock Balance for Self-Contained Environment

Tan et al. (2019) used a digital twin of a self-contained aquaponics production unit. The purpose of this
digitaltwin is to balance the fish stock and plants in the unit by monitoring them and controlling the unit
automatically. The digital twin uses temperature, light intensity, water flow, pH and dissolved salts
sensed data. The virtual unit performs simulations of fish feed, fish weight gain, pH, nitrates and plant
growth as what-if scenarios to find optimizations on the behavior of the whole system. It does this for
production maximization, waste minimization, water conservation, meeting quality standards and
other production goals. In their work, Machl et al. (2019) used a digital twin of the cultivated landscape
to support planners in designing agricultural road networks. The digital twin finds the road network
segments with high relevance for agricultural transportation helping planners to modernize these
segments according to the agricultural needs. The digital twin creates an information model (described
as a UML class) by coupling spatiotemporal information of the cultivated landscape with complex
analytical methods.

e Optimizing production goal
e Simulating system response
e Improving system efficiency

e Simulating environmental conditions

4.2. Tools Used for Digital Twins in Agriculture

4.2.1. Sensors

In agriculture, sensors are vital for gathering real-time data from the field. These sensors measure
various parameters such as soil moisture, temperature, pH, and nutrient levels. Soil moisture sensors,
for example, help farmers determine when to irrigate crops, ensuring water is used efficiently.
Temperature and pH sensors monitor soil health, which is critical for optimizing crop growth. Other
sensors can also track weather conditions like rainfall and humidity, providing farmers with insights to
make more informed decisions about planting, harvesting, and pest management.

4.2.2. 10T devices

loT devices in agriculture enable the seamless transmission of data collected by sensors to central
systems for monitoring and analysis. These devices connect sensors on the field with cloud platforms,
allowing farmers to access real-time data remotely via smartphones or computers. For instance, smart
irrigation systems powered by loT devices can automatically adjust watering schedules based on soil
moisture levels, optimizing water usage and reducing waste. loT devices also help in monitoring
environmental factors, like temperature and humidity, in greenhouses, improving the overall efficiency
of farming operations.
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4.2.3. Data Transmission

In agriculture, data transmission is essential for ensuring that data collected from various sensors and
loT devices reaches the central storage or processing systems. Technologies like cellular networks, Wi-
Fi, and LoRaWAN are commonly used to transmit data from the field to cloud platforms or local data
hubs. These systems enable the remote monitoring of crops and soil conditions, even in remote areas.
By ensuring reliable data transmission, farmers can make timely decisions based on real-time
information, whether it's adjusting irrigation schedules or responding to changing weather patterns.

4.2.4. Data Storage and Processing

Data storage and processing systems are fundamental in agriculture to manage the large volumes of
data generated by sensors and loT devices. Cloud-based platforms are often used to store this data
securely, enabling farmers to access and analyze it from anywhere. Advanced data processing
techniques help convert raw data into actionable insights, such as predicting crop yields, identifying
potential pests, or determining optimal planting times. By efficiently managing and processing
agricultural data, farmers can improve operational efficiency and make more informed decisions about
crop management and resource allocation.

4.2.5. Simulation and Modelling

Simulation and modeling tools are used in agriculture to predict and optimize farming practices. These
models simulate various environmental conditions and their effects on crops, such as predicting the
impact of weather, soil quality, and irrigation methods on crop yield. Using these tools, farmers can test
different scenarios, such as adjusting irrigation schedules or planting different crop varieties, to
determine the most effective strategies for maximizing yield and reducing resource waste. Simulation
helps in making data-driven decisions that can improve productivity while minimizing environmental
impact.

4.2.6. Machine Learning and Prediction

Machine learning and prediction technologies in agriculture are used to analyze data and predict future
trends or potential issues. For example, machine learning algorithms can predict crop yields based on
factors such as soil conditions, weather patterns, and historical data. Predictive models can also help
identify the likelihood of pests or diseases before they affect crops, enabling early intervention.
Additionally, machine learning can optimize irrigation schedules, forecast fertilizer needs, and assistin
precision farming by providing data-driven insights that improve crop management and resource
efficiency. (Saiz-Rubio et al. 2020).(Purcell and Neubauer 2023). (Martos et al. 2021). (Catala-Roman
et al. 2024). Catala-Roman et al. (2024) chose OpenDroneMap to be the best software, because of its
best quality-to-features ratio and its low cost-benefit ratio.

4.3. Case Studies in Agriculture

DT in sustainable agriculture are according to many authors [22, 23, 24] in primary stages and are not
developed enough to offer all the benefits that other human activity areas (building, energetic sector
etc.) enjoy. Exceptions included some deployed applications that were part of a European Union-
funded program [23]. There is still a long way to go before the agricultural community can fully rely on
the benefits of DT. Agricultural researchers and stakeholders should make an effort to stay up to date
with technological advancements and seek to find links between agricultural problems, and problems
that are solved with DT in other disciplines [23]. But scientific reviews mostly describe: plant nutrition
or crop development as the most interesting and already adjusted to get first DT solutions. It is a subset
in the sense of precision agriculture, but more broadly we see it as a SA solution for the whole farm, due
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to the complexity DT will be around for a long time in what we hope is a nearer but certainly some kind
of future in sustainable agriculture. An example of a case study for nitrogen (N) fertilization described
has wider importance [23].

The importance of the environmental issues associated with N management in crops, has been known
for a long time. The productivity of plants is strongly dependent on the availability of N, but crop use
efficiency of N is low and can result in significant N releases to the environment. This is an
environmental, farmer and food safety issue, and has large administrative and policy-making effort. The
N fertilization of crops has seen a growth trend. The impact of fertilizer-derived N, is associated with
water pollution and the release of greenhouse gases in major crop-producing regions of the world [32],
Thereis a clearrequirement for a more innovative approach to optimize efficient crop N-fertilization and
restrict N loss to the environment, made more urgent with the need for an agriculture transition towards
greater environmental, economic, and social sustainability [23].

The case study considers tools such as: global positioning systems (GPS), geographic information
systems (GIS) and remote sensing (RS), yield monitoring, and soil performance parameters as provided
data to build up a reasonably accurate picture of spatial area variability. For a more detailed
representation of the area/field (a precondition to the evaluation and potentially varying application of
N), the cultivated surface can be divided into more uniform management zones by using the overlay of
various thematic maps such as the spatial variability of area, soil properties, crop growth and yield [23].

When the potential management scenarios and their uncertainty are available, the farmer can
implement the most sustainable management practice based on both an economic and environmental
standpoint, which may include tradeoffs between net revenue and environmental outcomes such as
nitrate leaching [33]. As an example, if a digital twin (i.e., a validated crop simulation model) using past
observed weather data determines that in 24 out of the last 30 years (80%) a fertilization rate of
150 kg N/ha gives a yield of 10Mg/ha, the farmer may choose to apply 150 kg N/ ha knowing that there
is a 20% possibility (6 years out of 30) that applying a higher N fertilization rate would (statistically) result
in a higheryield [23].

In conclusion, the DT technology will hardly be able to cover the entire agricultural production on one
farm or in one agro-ecosystem, so it is hecessary to consider which concept of the application of DT in
agriculture we are talking about. In [23] authors arrange till now published papers in seven (28) groups.
They are as follows: Energy consumption analysis (analyze the energy consumption of the physical
system and find ways to minimize it); System failure analysis and prediction (analyze the data coming
from a system to identify the source of failure or when the system is going to need maintenance);
Optimization/update (find the optimal parameters for the operation of a system and update it to run
with those parameters); Behavior analysis/user operation guide (analyze human-made operations and
provide feedback); Technology integration (bring together different already deployed technologies
under the same umbrella to control and visualize operations more easily); Virtual maintenance (allow
users to virtually test different maintenance strategies to find the least intrusive one) [23].

= LDAS-MV

The LDAS-MV project in Mecklenburg Western Pomerania focuses on refining agricultural yield
forecasts and managing the water cycle. Leveraging data assimilation techniques within a digital twin
framework, it integrates land surface models, satellite remote sensing data, and near-seasonal
weather predictions. This fusion allows for the accurate prediction of sub-daily surface conditions,
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facilitating informed decision-making for agricultural management practices and water resource
allocation.

= NATURE-DEMO

The NATURE-DEMO project, in which University of Rostock was involved, aims to enhance sustainable
infrastructure development by integrating advanced digital twin technologies, specifically within alpine
areas, with a focus on methods transferable to coastal environments. The core intention of the project
is to create accurate digital replicas of both built infrastructure and their natural surroundings using
graph neural network (GNN) models. These digital twins facilitate better planning and management by
automating the development and refinement of sustainable building designs and environmental
models. By leveraging GNNs, the project seeks to capture complex causal relationships within the
infrastructure and environmental systems, enabling more precise predictions and decision-making.
The digital twins incorporate data from various sources, including remote sensing and high-precision
3D measurement systems, to monitor and optimize operations, thus contributing to the sustainability
and resilience of infrastructure against climate threats such as water stress, floods, and droughts.

Implementing digital twin technology within the NATURE-DEMO project involves several significant
challenges. One primary challenge is automating the configuration of GNN models to accurately reflect
the causal structures of real-world systems, as opposed to merely identifying correlations. This
requires sophisticated methodologies for deriving semantic models from diverse data sources to
ensure the digital twins are both accurate and useful. Another challenge is the integration of data from
different sources into cohesive graph models, which is essential for effective behavior predictions and
actionable insights. Processing and managing large datasets necessitate advanced IT infrastructure
and expertise, particularly in developing and deploying Al models. Additionally, the ongoing
development and validation of the digital twins against real-world measurements require rigorous
control measurements and continuous refinement, adding complexity and demanding a high level of
precision and expertise. Addressing these challenges is crucial for leveraging the full potential of digital
twin technology in promoting sustainable infrastructure development and environmental protection.

5. Life Sciences and Medical Applications in Digital Twins

In the context of digital twins, life sciences and medical applications involve creating virtual replicas of
biological systems, organs, or patients to simulate, monitor, and analyze their health and behaviors.
These digital models integrate data from medical imaging, patient records, wearables, and genetic
information to enable personalized treatment, disease prediction, and surgical planning. Digital twins
in healthcare can help optimize clinical outcomes by providing real-time insights into patient
conditions, predicting disease progression, and testing treatment strategies in a risk-free virtual
environment. This approach enhances precision medicine, improves patient care, and accelerates
medical research and development.

5.1. Digital Twin Examples in Life Sciences and Medical Applications

Personalized Healthcare Models

Digital twins are used to create virtual models of individual patients by integrating medical data such as
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genetic information, medical history, and real-time health data (e.g., from wearables). These models
help healthcare providers tailor treatments and interventions to the specific needs of each patient,
improving outcomes and minimizing side effects.

e Tailored treatment

e Minimized side effects

e Faster Diagnosis

e Efficient resource allocation

e Optimized dosage

e Chronic disease management
Organ Simulation for Medical Training

Digital twins of organs, such as the heart or liver, are created to simulate human anatomy and
physiology. These models are used for medical training, surgical planning, and research, allowing
doctors to practice procedures or test medical devices without risk to real patients.

e Surgical Planning

e Testing medical devices

e Minimized surgical risk

e Medical Education

e Reduced learning curve

e Accesstocomplex cases
Predictive Health Monitoring

By combining data from wearable devices, sensors, and electronic health records, digital twins can
continuously monitor a patient's vital signs (e.g., heart rate, blood pressure, glucose levels). These
models can predict potential health issues, such as heart attacks, strokes, or diabetes complications,
enabling early intervention and proactive care.

e Continuous Monitoring
e Early detection
e Real-time alerts
e Preventive healthcare
e Proactive care
Drug Development and Testing

Digital twins are used in the pharmaceutical industry to simulate the human body’s response to new
drugs. By modeling individual patients’ responses to different treatments, researchers can predict how
new drugs will behave, test efficacy, and identify potential side effects before clinical trials, speeding
up drug development.
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e Personalized drug testing
e Simulate drug response
o Simulate drug efficacy
e Increased cost-effectiveness
e Potential side effect identification
e Simulate long-term effects
Surgical Planning and Simulation

Surgeons can use digital twins to simulate complex surgeries. These models replicate the patient's
anatomy and conditions, helping surgeons plan the procedure more accurately, anticipate challenges,
and reduce the risk of complications during actual surgery.

e Increased accuracy

e Preoperative visualization

e Surgical challenge identification

e Surgical risk reduction

e Increased time efficiency

e Personalized Surgery
Patient-Specific Prosthetics and Implants

Digital twins of individual patients can be created to design and customize prosthetics orimplants that
match their unique anatomical features. This results in better-fitting devices that improve functionality,
comfort, and overall patient satisfaction.

e Improved comfort

e Enhanced functionality

e Improved surgical planning

e Fasterrecovery

e Reduced risk of complications

e Increased patient satisfaction
Chronic Disease Management

Digital twins can be used to manage chronic diseases like asthma, diabetes, or cardiovascular
conditions. These models integrate continuous data from monitoring devices and predict disease
progression, enabling personalized management plans that are adjusted in real-time based on the
patient’s current condition.

e Progression prediction

o Real-time adjustments to treatment
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e |mproved medication management

e Reduction in hospitalization

e |ong-term health management
Epidemiology and Disease Spread Simulation

Digital twins can be applied in public health to model the spread of infectious diseases. By creating
virtual populations with specific health data, these models can simulate disease transmission, predict
outbreaks, and help policymakers make data-driven decisions to manage and mitigate public health
crises.

e Disease transmission modelling

e Qutbreak prediction

e Targeted intervention strategies

e Medicalresource allocation

e Preventive measure impact evaluation

Digital twins in life sciences and medical applications are transforming healthcare by creating dynamic
virtualreplicas of patients, organs, and entire systems, enabling more accurate diagnosis, personalized
treatment, and improved operational efficiency. These virtual models integrate data from various
sources, including medical history, genetic profiles, diagnostic imaging, and real-time information from
wearable devices, providing clinicians with detailed, patient-specific simulations. In personalized
medicine, digital twins allow for the simulation of different treatment options, helping doctors to predict
how individual patients will respond to various therapies or surgeries.

For instance, using a digital twin of a patient's heart, physicians can plan cardiac procedures with
greater precision and tailor interventions to the specific needs of the individual, minimizing risk and
improving outcomes.

Beyond individual patient care, digital twins are playing a key role in accelerating drug development and
optimizing clinical trials. By creating virtual models of organs or even specific cells, researchers can
test how new drugs interact with the body, predict efficacy, and identify potential side effects before
clinical trials begin. This approach reduces the reliance on animal testing, speeds up the process of
drug discovery, and helps in the design of more targeted therapies. Companies like Insilico Medicine
use Al-driven digital twins to simulate how drugs will affect various biological systems, helping identify
the most promising drug candidates early in the process.

In the realm of surgery, digital twins are used for pre-surgical planning and simulation, allowing
surgeons to rehearse complex procedures virtually before performing them. Technologies like Surgical
Theater and Materialize offer 3D models of patient anatomy based on imaging data, such as MRIs or CT
scans, enabling surgeons to visualize and practice procedures, reducing errors and enhancing
precision. These tools are particularly useful for intricate surgeries, such as neurosurgery or orthopedic
procedures, where detailed planning and visualization can significantly improve patient outcomes.

Digital twins also play a critical role in the continuous monitoring and optimization of medical devices.
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Forexample, digital twins of medical devices, like pacemakers or insulin pumps, can be used to monitor
real-time performance, detect potential malfunctions, and predict when maintenance or upgrades are
needed. By integrating sensor data from these devices, manufacturers and healthcare providers can
ensure that equipment is functioning optimally, leading to better patient safety and device longevity.
Companies like Medtronic leverage digital twin technology to enhance the performance and reliability
of their medical devices.

In addition to individual care, digital twins are being used to optimize healthcare systems at large.
Hospitals and clinics are using digital twins to simulate and improve patient flow, resource allocation,
and staff scheduling. For example, virtual models of hospital operations allow administrators to predict
patient demand, optimize bed utilization, and improve the overall efficiency of healthcare delivery. This
approach helps reduce waiting times, streamline processes, and ensure that resources are being used
effectively, ultimately improving the quality of care and patient satisfaction.

On a larger scale, digital twins are being applied to public health and epidemiology, where they help
track disease trends, simulate disease spread, and predict health outcomes across populations.
During the COVID-19 pandemic, digital twin models of the virus's spread were used to inform policies,
optimize healthcare resource deployment, and plan interventions, helping public health authorities
respond more effectively to the crisis. Similarly, digital twins are used to model the spread of infectious
diseases, allowing for better preparedness and targeted public health responses.

Wearable devices, such as smartwatches and fitness trackers, also contribute to the creation of
personal digital twins by continuously gathering data on key health metrics like heart rate, sleep
patterns, physical activity, and blood sugar levels. This real-time data can be integrated into a digital
twin model to provide ongoing insights into a patient’s health, enabling proactive interventions and
personalized health recommendations. For example, wearables integrated with digital twin technology
can alert both patients and healthcare providers to early signs of health issues, such as arise in blood
pressure or irregular heart rhythms, allowing for timely treatment and prevention.

In oncology, digital twins are proving invaluable by simulating tumor growth and predicting how a
specific tumor will respond to various treatments, including chemotherapy, radiation, or
immunotherapy. By creating digital models of tumors and their surrounding tissue, clinicians can
explore different treatment options, optimize dosages, and reduce side effects. This technology
enables personalized cancer care, where treatment plans are specifically tailored to the unique
characteristics of a patient's cancer, improving the chances of a successful outcome. Companies like
Kheiron Medical Technologies are using digital twins to model breast cancer tumors and predict how
they will respond to different interventions.

5.2. Tools Used for Digital Twins in Life Sciences and Medical Applications
5.2.1. Sensors

In the life sciences and medical fields, sensors are used to monitor a patient’s real-time physiological
parameters, such as heart rate, blood pressure, glucose levels, oxygen saturation, temperature, and
brain activity. Wearable sensors, such as those in fithess trackers or medical devices (e.g., continuous
glucose monitors), collect data that is crucial for continuous health monitoring, chronic disease
management, and early detection of medical conditions.
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5.2.2. loT Devices

loT (Internet of Things) devices in healthcare connect medical equipment, wearables, and patient
monitoring systems to the Internet, enabling the continuous collection of data. Examples include smart
thermometers, ECG monitors, insulin pumps, and pulse oximeters. These devices transmit real-time
data to healthcare providers, offering insights into a patient's condition remotely. loT is especially
important in managing chronic conditions and enabling telemedicine, where doctors can remotely
monitor patients and adjust treatment plans.

5.2.3. Data Transmission

Data transmission is crucial for transferring the collected sensor and device data from patients to
healthcare systems or cloud platforms. This typically involves wireless technologies like Wi-Fi,
Bluetooth, 5G, or LoRaWAN. The data is transmitted securely to ensure privacy, enabling real-time
monitoring, quick response to changes in patient condition, and integration of health data across
systems for decision-making. Data transmission is essential for remote patient monitoring,
telemedicine, and the integration of wearable health technology with healthcare providers' IT systems.

5.2.4. Data Storage and Processing

The data collected from sensors and |oT devices is stored and processed in centralized cloud-based
platforms or on-premise servers. Cloud computing allows healthcare professionals to access large
volumes of patient data from multiple sources in real time. This centralized data storage supports the
analysis of health trends, monitoring of chronic conditions, and predictive modeling. Processing this
data enables insights into patient health, helping doctors make informed decisions, track patient
progress, and develop personalized treatment plans. Cloud-based systems are also scalable, allowing
health organizations to manage vast amounts of data efficiently.

5.2.5. Simulation and Modelling

Simulation and modeling tools are used to replicate complex biological systems and human anatomy
to better understand diseases, predict health outcomes, and design effective interventions. For
example, digital twins of organs or entire patients allow for surgical planning, drug testing, or organ
transplantation simulation. These tools help in the development of new medical technologies,
personalized medicine, and understanding the progression of diseases. Simulations can also be used
to predict the impact of lifestyle changes or medication adjustments on a patient's health.

5.2.6. Machine Learning and Prediction

Machine learning (ML) and predictive analytics are key components in the life sciences and medical
fields for analyzing large datasets and making predictions about patient health. ML algorithms are used
to identify patterns in medical data (e.g., identifying early signs of diseases like cancer or Alzheimer’s),
forecast patient outcomes, and assist in clinical decision-making. Predictive models can forecast
disease progression, anticipate potential complications, or assess the risk of hospitalization. ML is also
applied in drug development, genetic research, and personalized healthcare models by identifying
effective treatments based on individual patient data. For example, ML models can predict the
likelihood of heart attacks, detect anomalies in imaging scans, and recommend tailored treatment
plans.
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5.3.

Case studies for Life Sciences and Medical Applications

Below is presented several projects regarding Life Science and Medical Application in which Catholic
University of Valencia was involved.

= DART (Diabetes- Augmented Reality Training)

DART project aims to promote synergies between sport and health, promote inclusion in sports, promote
health-enhancing physical activity for people with diabetes type | and Il, encourage healthy lifestyles and
raise awareness of the added value of sport and physical activity. DART objectives will be achieved through
the design and implementation of innovative digital tools and training e-modules. Specifically, the DART
project will develop and implement: a) an innovative, fun and eco-friendly Mobile app in 7 language versions
using an Augmented reality Personal trainer teaching diabetic patients specialized physical exercises that
will help reduce blood pressure, lower the levels of fats in the blood, keep the heart healthy, improve blood
sugar levels and prevent excess weight gain. Also, the app will include geofence technology for outdoor
activities, a customized calendar for inserting medicines, doctors' appointments, etc. and an insulin dose
reminder; b) 30 interactive e-modules based on Moodle targeting Physical Education teachers including a
series of Podcasts; c) Awareness raising Events (Multiplier and live streaming) targeting a wider audience of
Diabetic patients (type | and Il) and their families from all countries involved and above.

= NONNA (aNalysing cOgnition through Natural laNguage in older Adults)

NONNA is a research project exploring how spontaneous language use can reveal insights into
cognitive abilities in older adults. By analyzing natural language patterns, the project aims to
understand cognitive processes related to aging, ultimately leading to better detection and intervention
strategies for cognitive decline. Real-world case studies involving elderly individuals to identify
cognitive decline through voice interaction. Data collection focuses on speech patterns, response
times, and linguistic complexity during interactions with the NONNA voice assistant.

= BHRVLC (Brain Health and Resilience Valencia Challenge)

A collaborative research and innovation proposalis underway to establish in Valencia an internationally
recognized hub for the study of resilience and brain health. The challenge involves creating a people-
centered ecosystem of excellence, co-created and co-developed by participants. Coordinated from
UCV (Catholic University of Valencia) and open to participation from universities within the Community,
nationwide, and from other countries. This hub aims to bring together businesses, technological and
innovation centers, as well as healthcare institutions. Moreover, neuromodulation is a pivotal
component of this initiative, leveraging advanced techniques such as Transcranial Magnetic
Stimulation (TMS). By integrating neuromodulation into our research framework, we aim to explore the
direct modulation of brain activity to enhance resilience and promote brain health.

=  Walkable Cities Instruments

This project, which increases physical activity in neighborhoods with low walkability levels, presents an
important connection with the health of the city's coast, which extends through several interrelated
aspects. By actively promoting a more active and healthier lifestyle among residents, we not only
address the challenge of improving public health and reducing diseases related to physical inactivity
but also generate beneficial indirect impacts on the coastal environment. Promoting physical activity
leads to a decrease in motor vehicle use, which in turn reduces air pollution, a critical factor affecting
air quality throughout the region, including coastal areas. This reduction in air pollution has positive
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effects on water quality and marine biodiversity by minimizing the entry of air pollutants into the aquatic
environment. Furthermore, by encouraging people's connection with nature through outdoor physical
activity, greater environmental awareness and more responsible care of coastal ecosystems are
promoted, which contributes to their long-term preservation. In summary, the project not only seeks to
improve the health and well-being of residents, but also aims to protect and conserve the natural
coastal environment, thus creating a positive and sustainable impact on the health of Valencia's coast

5.4. Comparison of Case Studies
Case Study DART NONNA BHRVLC Walkable
Cities
Voice sensors Non-invasive
(microphones sensors, EEG
Acelerometers, embedded in devices, wearable
Sensors IMU, GPS, heart devices) biometric sensors -
rate monitor sensors, heart Environmental (e.g.,
rate and stress light and noise
level monitor levels).
Wearable health
Azure-compatible monitors (e.g.,
loT Devices Smartwatch, smart speakers or smartwatches, )
Cellular microphones, fitness bands) and
Azure loT Hub brain health devices
(EEG headbands)
Secure data Wi-Fi,
Cellular. Wi-Fi. or transmission via Wi-Fi, LoRaWAN, LoRaWAN,
Data ’ ’ Azure loT Hub cellular networks cellular

Transmission

Data Storage
and
Processing

Simulation
and Modelling

Machine
Learning and
Prediction

any internet
conection

Cloud storage
(UCV forms and
Cloud, Azure) for

localized
databases for
infrastructure

metadata

Al algorithms using
predictive models
(Python, MATLAB)

using MQTT,
HTTPS, or AMQP
protocols

Azure Cloud,
Azure Cognitive
Services, (Speech-
to-Text APl and
Text Analytics AP).

Natural Language
Processing (NLP)
models

Azure machine
learning

networks for
cloud-based
transmission

for cloud-based
transmission

Azure Data Lake, Cloud storage

Azure SQL systems
Database (Google)
Brain health
trajectory models i
Linear and
logistic
Al algorithms using regressions
predictive models (SPSS) to
(Python, MATLAB) | predict physical
activity (Python,
MATLAB)

Tabel 3. lllustrates the tools and methods used in DART, NONNA, BHR VLC and Walkable Cities
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6. Comparison of Tools between Built Environment, Agriculture and

Life Sciences and Medical Applications

Life Sciences and Medical

Tool Built Environment Agriculture s
Applications
Temperature,
Temperature, Humidit H
Occupancy, Humidity, . W, P Optical, Piezoelectric,
. . s Soil Moisture,
Sensors Air Quality, Lighting, . Temperature, Heart Rate,
Light, Camera,
Pressure, Accelerometer, GPS
Accelerometer GPS tracker,
LiDAR
Smart Meters for; Weather SFat|on, Smartwatch, Fitness
. .. Drones, Multispectral
loT devices Energy, Electricity, Gas, and Hvberspectral Tracker, Smart Inhalers,
HVAC, Lighting ypersp Neurostimulators
Cameras
Data Cellular, Wi-Fi, Cellutar, Wi-Fi, Cellular, Wi-Fi, or any
L. LoRaWAN for low- . .
Transmission LoRaWAN for low-power power internet conection
Cloud Storage

Data Storage
and Processing

Simulation and
Modelling

Machine
Learning and
Prediction

Cloud storage (AWS,
Azure, Siemens
MindSphere, Hottinger
Baldwin Messtechnik)

Al algorithms for
predictive maintenance,
Energy Efficiency, and
Predictive Consumption
Models (Python,
MATLAB)

(Microsoft Cloud,
Azure) for localized
databases for
infrastructure
metadata

Al algorithms for
evaluation of climate
data or soil
conditions, prediction
of growth and

Cloud storage (Microsoft
Cloud, Azure) for localized
databases for infrastructure
metadata

Al algorithms for predictive
physical activity, more
efficient exercises, and

creating predictive models

(Python, MATLAB)

Table 4. Comparison between sectors of Built Environment, Agriculture, Life Sciences and Medical
Applications

The tools used in built environments, agriculture, and life sciences/medical applications all serve to
enhance efficiency, optimize operations, and improve decision-making, but their specific technologies
and applications differ due to the nature of each sector. In the built environment, sensors such as
motion detectors, temperature, humidity, and air quality sensors are commonly used in smart buildings
to monitor and control environmental conditions, while 10T devices help integrate these systems for
real-time management. Data transmission tools like Wi-Fi, Zigbee, and LoRaWAN are widely used to
connect loT devices to centralized systems, and data storage is typically handled by cloud services,
providing scalability and ease of access. In agriculture, sensors for soil moisture, temperature, light,
and pH are used to monitor crops and optimize irrigation and fertilization. loT devices in agriculture,
such as GPS-guided tractors and drones, help collect large datasets that are transmitted via cellular or
low-power wide-area networks (LPWAN). Data storage tools include both cloud and edge computing
solutions for real-time analysis. Al and machine learning are applied for predictive analytics, crop yield
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forecasting, and pest detection. In life sciences and medical applications, sensors like ECG monitors,
glucose sensors, and wearable health devices continuously collect health data from patients. loT
devices, including smart pacemakers and wearable fitness trackers, feed data to cloud-based
platforms for integration and analysis. Data transmission tools in healthcare, like Bluetooth and 5G,
ensure that real-time health data is transmitted securely. Data storage in the medical field involves
robust, HIPAA-compliant systems, with both cloud storage and local medical records systems. Al and
machine learning tools are heavily utilized for diagnostic purposes, predictive health analytics, and
personalized treatment plans, helping to provide deeper insights and improve patient outcomes.
Across all sectors, the synergy of sensors, loT, data transmission, storage, and AI/ML tools is
transforming how data is collected, processed, and used to drive decision-making and optimization.

7. Models Used in Digital Twins

In the context of Digital Twins, a Model refers to a digital representation or simulation of a physical
object, system, or process. This model is created using data, algorithms, and various technologies to
reflect the real-world counterpart as accurately as possible. Digital twins are used to simulate, monitor,
and optimize physical assets, systems, or environments in real time. There are several types of models
that are presentin the creation of digital twins depending on the target area. The key roles of the models
include simulation and testing, monitoring and diagnostics, optimization and prediction. For the built
environment, agriculture and Life Sciences & Medical Applications the most common modeling
technique used is Data-Driven/Predictive.

7.1. Data-Driven/Predictive

A data-driven modelin the context of digital twins refers to a model that leverages large volumes of real-
time and historical data to simulate, analyze, and predict the behavior of physical assets or systems.
Unlike traditional models that are based on predefined rules or physical principles (such as the physical
model or behavioral model), data-driven models rely on data patterns, trends, and correlations
extracted from sensors, monitoring systems, and other data sources to make predictions or inform
decisions.

A predictive model in the context of digital twins is a type of model that uses data-driven techniques
(such as machine learning, statistical analysis, or other advanced analytics) to forecast future events
or behaviors based on historical data, real-time inputs, and simulation results. It is designed to
anticipate how a physical system or asset will behave in the future, allowing for better decision-making,
proactive management, and optimized operations.

In a digital twin framework, a data-driven model continuously receives and processes data from the
physical asset or environment, and then uses this data to generate insights, identify trends, detect
anomalies, or optimize performance. These models can learn and improve over time as they are fed
more data, enabling more accurate forecasting and decision-making. A predictive data-driven model
continuously integrates data from tools such as sensors, loT devices, and other sources to simulate
and predict the future performance or condition of the physical asset. This model can predict
maintenance needs, energy consumption, equipment failures, or system performance under varying
conditions.
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7.2. Gradient Boosting: A Mathematical Deep Dive

One of the most important techniques used by forecasting models is gradient boosting. This method
has been extensively applied in areas like regression, classification, and time-series forecasting due to
its robustness and flexibility (Friedman, 2001). This technique is used extensively in models like
Skforecast, XGBoost, LightGBM and CatBoost.

In this section, we delve into the underline mathematics of the gradient boosting model, focusing on its
theoretical framework, optimization process, and how it applies to real-world datasets, such as
predicting electricity consumption.

7.3. Problem Formulation

The primary task is to be able to predict a quantity of interest, for instance, electricity
consumption denoted by y based on a set of input features x = [xq, X5, ... ... ,Xn], where x; is a vector

. T ti. . . . .
defined by x; = [xitl,xitz, ...,xit"] .Here xl.’ is the reading of feature x; attime tj, representing potentially

relevant influencing factors, such as:
e x4:Pastelectricity usage data.
e x,: Past humidity data.
e x5: Pastinternaltemperature.

Thus, the feature matrix can be represented as:

ty ty
xl e xn
x=]: L,
tk tk
x 1 xn

where n is the number of different factors. Given this dataset x, our goal is to build a model F(x) that
minimizes the expected value of a loss function L(y, F(x)), expressed as:

F*(x) = arg min E[L(y, F (x))],
where the expectation E[-] captures the overall error across the dataset (Hastie et al., 2009).
For regression problems, common choices for L include:

1. Squared Error Loss:

1 2
Lo F)=50G-F)7%
commonly used in basic regression tasks.
2. Absolute Error Loss:
L(y,F)=1ly—F|,
providing robustness to outliers but less smooth for optimization (James et al., 2013).

3. Huber Loss (arobust alternative):
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1
E(y—F)Z, if ly—F|<6

Ly, F) = EY :
s(ly=Fl-3). if ly-FI>3

This function is a combination of the Mean Squared Error (MSE) and Mean Absolute Error (MAE),
behaving like MSE for small residuals and MAE for large residuals, (Huber, 1964). In the formula
0 is a threshold parameter that determines the switch between MSE and MAE behavior. The
parameter § needs to be tuned depending on the dataset.

7.4. Stagewise Additive Modelling

Gradient boosting builds the model F(x) iteratively as a sum of simpler models (weak learners). At
the m™ iteration:
Epn(x) = Fpoq(x) + v hyp (%)
where:
e F,_,(x): The model after m-1 iterations.
e h,(x): The weak learner at step m, often a decision tree.
e v:lLearningrate (0 <v < 1) controlling the contribution of h,, (x).

If the initial model is denoted by F,(x) then the above equation can be written as:

Fn(3) = Fo@) + ) v (@)
j=1

J

7.4.1. Weak Learner

The term weak learner, denoted by h,,(x), refers to a simple model that performs slightly better than
random guessing on the task at hand. In gradient boosting, weak learners are used as building blocks,
and their predictions are combined iteratively to form a strong, highly accurate model, (Friedman,
2001).

The most common weak learners in gradient boosting are decision trees, specifically shallow
trees (trees with limited depth, such as 1-5 levels). These shallow trees are also called stumps when
the depthisjust 1. Shallow trees are chosen because they are computationally efficient and reduce the
risk of overfitting in each boosting step, (Breiman, 1996).

Each weak learner is trained to approximate the residuals (errors) of the current model at that iteration.
For instance, if the current model predicts F,,_; (x) and the true value is y, the weak learner is trained
to minimize the error:

1 =Y — Fpo1(x0)

This incremental approach ensures that each weak learner contributes to correcting the mistakes of
the previous model, (Friedman, 2001).

The use of Decision Trees is usually the common choice for weak learners as they are interpretable and
handle non-linear relationships well, (Breiman, 1996). In addition, they do not require extensive
preprocessing of data (e.g., feature scaling or normalization), (Quinlan, 1986).
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On their own, weak learners are not powerful enough to model complex patterns. However, gradient
boosting leverages many of them sequentially to build a strong model.

7.4.2. Learning Rate v

The learning rate is a crucial hyperparameter in gradient boosting that controls the contribution of each
weak learner to the overall model. The learning rate, denoted by v, is a scaling factor applied to the
predictions of each weak learner. The updated model at step m becomes:
Fn(x) = Fp—1(X) + v hyp (%),

where h,,(x) is the weak learner’s prediction.

A low learning rate reduces the impact of each weak learner, requiring more iterations for convergence.
It also encourages finer adjustments, leading to better generalization but increased
computation, (Hastie et al., 2009). On the other hand, a high learning rate increases the impact of each

weak learner, potentially allowing faster convergence. However, it risks overfitting, as the model may
overreact to individual weak learners' errors, (Friedman, 2001).

In practice, learning rates like v = 0.1 orv = 0.01 are commonly used. The optimal choice depends on
the dataset and the complexity of the problem, (Friedman, 2001).

7.4.3. Loss Function and Negative Gradient

The key idea of gradient boosting is to optimize the loss function L(y,F) by adding weak
learners, h,,(x), that fit the negative gradient of the loss function at E, (x), (Friedman, 2001). Thisis the
key step in the gradient boosting algorithm.

To begin with, the residuals (errors) are defined mathematically as:

o [GL(qu)]
m
F= Fm 1(x1)

Here 13, represents the residuals, which act as pseudo-responses that will guide the weak
learner h,,(x), (Breiman, 1996).

7.4.3.1. Squared Error Loss

As mentioned earlier, a common choice of loss function for regression problems is squared error loss,
which is given by:

1
L(y,F) =§(}’—F)2-

The gradient of the squared error loss with respect to the model output F is:

JL _F

oF 77
Thus, the residuals become:

=Yi— Fm—l(xi)J

which represents the error between the true value y; and the current prediction F,,,_; (x;). At each
iteration, the weak learner h,,(x) is trained to fit these residuals (Friedman, 2001).
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7.4.3.2. Absolute Error Loss

Another option for the loss function is absolute error loss, which is defined as:

L(y,F) = |y —FI.

The gradient of the absolute error loss with respect to the model output F is:

0% — sign(F - )
— =sign(F —y),
oF 9 y
where sign(F — y) is the sign function, which returns 1if F —y > 0,and -1if F —y < 0.
Thus, the residuals become:
Tim = —Sign(Fpm_1 () — ¥;)
These residuals will guide the weak learner in the subsequent iteration, helping the model focus on the
areas with the most error, (James et al., 2013).

7.4.3.3. Weak Learners and Tree Structure

In gradient boosting, weak learners are typically decision trees, (Quinlan, 1986). Each tree partitions the
feature space R™ into J regions {R}"}j_l. For a sample x, the prediction from the tree at iteration m is

given by:

J
() = ) ¥ 1y
4 {xerT"}

where:

1{x€Rm} is an indicator function that equals 1 if x belongs to region R™, and 0 otherwise.
]

e y;"isthevalue predicted for region R/™.

To find y}”, we minimize the loss over all samples in region R}". This involves solving the following

optimization problem:
yj" =arg min z Ly, Fn-1(x) +7)
x,ER™
J
For the squared error loss, the optimal yjm is the mean of the residuals in the region ij:

leeR;n(yi_Fm—l(xl))

leeR}" 1

This ensures that each weak learner (decision tree) fits the residuals in each region of the feature space
optimally (Friedman, 2001).

For the absolute error loss, the optimaly]m is the median of the residuals in the region R™, not the mean
as in the squared error case. This is because the median minimizes the sum of absolute deviations.

Formally:

yj" = Median (yi = Fno1(x)), ¥ x, € Rj™.



@ “CONEXUS R Fundedby
ENABLES LN the European Union

For absolute error loss, the optimization objective is non-differentiable at the residual zero-crossings,
but the minimum occurs at the point where the sum of positive deviations equals the sum of negative
deviations. This balancing point is precisely the median of the residuals, (Hastie, 2009).

7.4.4. Final Model

After M iterations, the final modelis expressed by:

M
Fy(@) = Fo@) + ) v (@)
m=1

This model combines predictions from all weak learners.
7.4.5. Algorithm Outline
For clarity, here’s the full algorithm for gradient boosting:
1. Initialize: Set Fy(x) = arg min ;- L(y;,7)
14
2. lterate for m=1,...,M:

e Compute residuals:

Tim= — |7 %

oF ]F=Fm—1(xi)

e Fitaweak learner h,,(x) to the residuals r;,.
e Optimize the weak learner’s predictions y}".
e Update the model:
Fn(x) = Fp1(X) + v hypy (%),
3. Final Model

After M iterations the final modelis:

M
Fu () = o) + ) 7 ()
m=1

7.4.6. Practical Application to Electricity Prediction

Dataset
e Influencing factors: x; = [past electricity usage, humidity, temperature, etc. ]
e Target:y; = electricity consumption

Model Training

1. Initialization: Start with a constant model:

n n =
1
Fy(x) = arg myirlz Ly, y) = arg myinZ(yi —1*= Ezyi
i=1 i=1 =1
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2.

3.

Iteration: Ateach step, compute residuals 1}, andfit a decision tree h,, (x). Forexample, if y; =
52 and F,,,_; (x;) = 44, the residual is r;,, = 8.

Prediction: After training M iterations, the model predicts:

M
Fy () = Fo@) + ) v (@)
m=1

8. Examples of Digital Twin models under development at the widening
EU-CONEXUS partners with replicability potential towards the
associated partners

Between widening partners were identified two projects regarding Digital Twin, NetZeRoCities, in which

Technical University of Civil Engineering of Bucharest is involved and SmartLivingEPC project, Frederik

University being part of the research.

8.1.

NetZeRoCities

NetZeRoCities project identifies several tools and technologies related to digital twin development,
particularly in the context of the EFdeN building. The following tools can be transferred and replicated
for digital twin technologies:

1.

IES VE (Integrated Environmental Solutions Virtual Environment): This simulation platform
is used to analyse and optimize the energy performance of buildings. It allows users to create a
3D digital model of a building and assess its performance under various conditions. The
software integrates multiple modules for energy use calculation, cost analysis, and life cycle
analysis.

IES iScan: This intelligent solution manages building data to reduce consumption and carbon
emissions. It centralizes data from various sources, including Building Management Systems
(BMS), utility meters, and sensors, facilitating the analysis and interpretation of energy
consumption and indoor comfort data. iScan also enables the creation of Digital Twins for
simulating future scenarios and assessing retrofit options.

Machine Learning Models: The document discusses the integration of machine learning
algorithms for monitoring, functionality optimization, simulation, diagnosis, and predictive
maintenance. Specific models mentioned include Isolation Forest for anomaly detection and
Deep Q-Learning for optimizing HVAC system control.

Data Visualization and Analysis Tools: The iSCAN platform provides capabilities for visualizing
data, creating perspectives for analysis, and generating insights from the analysed data. It
allows for the import of measured data and the application of machine learning models to
assess building energy performance

These tools collectively support the creation, management, and optimization of digital twins, making

them suitable for replication in other projects focused on energy efficiency and sustainability in
buildings.
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The model identified refers to the Digital Twin created for the EFdeN building project. This Digital Twin
serves as avirtual representation of the physical building, allowing for the simulation and analysis of its
behaviour, performance, and interactions with various environmental factors. The model integrates
real-time data collected from sensors installed throughout the building, enabling continuous
monitoring and optimization of its operations.

8.2. SmartLivingEPC

In the context of the SmartLivingEPC project, the model identified refers to the digital twin application
that simulates the energy usage, environmental impact, and operational efficiency of buildings,
particularly in coastal zones. This model is designed to improve sustainability practices and reduce
carbon footprints by considering the unique microclimate and environmental conditions of coastal
areas, such as high humidity and varying temperature gradients.

The tools for digital twin technologies identified in the "SmartLivingEPC Project Overview" document
include:

1. Building Information Modeling (BIM) Software: This software is essential for comprehensive
architectural and engineering design, serving as a foundational tool for creating detailed virtual
models of buildings.

2. Digital Twin Platforms: These platforms enable real-time building performance simulation,
allowing for the dynamic representation of the physical systems.

3. loT Devices: These devices are crucial for granular data collection, capturing a wide range of
environmental and operational parameters necessary for the digital twin's functionality.

4. Smart Sensors: Capable of monitoring various conditions, smart sensors provide the data
needed to inform the digital twin's operations and performance assessments.

5. Data Analytics and Visualization Software: This software is necessary for interpreting
complex datasets generated by the digital twin, facilitating informed decision-making.

6. Machine Learning Algorithms: These algorithms are utilized for predictive analytics and
optimization of energy consumption, enhancing the digital twin's capabilities.

7. Integration Platforms: These platforms facilitate seamless communication between BIM,
digital twins, loT data streams, and smart sensors, ensuring cohesive operation.

8. Big Data Management Solutions: These solutions are essential for handling the volume,
velocity, and variety of data generated by the digital twin technologies.

These tools can be transferred and replicated in other projects aiming to implement digital twin
technologies, particularly in the context of building sustainability and energy performance analysis.
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9. Selection of Digital Twin models identified at non-widening EU-
CONEXUS partners with replicability potential towards the widening
partners

Non-widening universities shared their initiatives toward Digital Twin models, many of which are still in
the incipient phase. Each project aims to create a comprehensive digital representation that integrates
real-time data, simulations, and predictive analytics to inform decision-making and promote
sustainable practices

9.1. Urban & Coastal Lab La Rochelle

The Urban & Coastal Lab La Rochelle (UCLR) project, in which La Rochelle University is part of, is
developing an open-source web platform that is based on interoperability standards, which serves as a
tool for digital twin technologies. The specific tools identified in the document that can be transferred
and replicated include:

1. Open-source Web Platform: This platform will facilitate the sharing, preservation, citation, and
exploration of research data, models, and digital tools.

2. Catalog Service: This service will allow users to share and manage research data and models
effectively.

3. TERREZE Data Platform: An upgraded version of this platform will provide analytics services
on-demand, enabling the processing and interpretation of coastal data for various scientific,
research, and application purposes.

These tools are designed to support the collection and management of data, which is crucial for the
effective implementation of digital twin technologies, particularly in the context of sustainable
management of coastal territories as outlined in the project. The emphasis on interoperability and
open-source development also suggests that these tools can be adapted for use in other contexts
beyond the UCLR project, making them replicable and transferable.

The status of the UCLR project, indicates that it is currently in the development phase. The project is
focused on establishing a platform for collecting and formatting data and models, which is part of a
broader initiative to create a common data management policy within La Rochelle University. In the
short term, the emphasis is on developing the platform and pooling data around various case studies
to demonstrate its utility.

Additionally, there are plans for a longer-term development that includes the creation of scientific tools
for analysis, simulation, and integration of data and models, with a specific focus on incorporating
digital twins.

In the context of the UCLR project, the model identified pertains to the establishment of a platform
dedicated to pooling, exploiting, and valorising data, models, and digital tools from various research
laboratories at La Rochelle University. The project emphasizes the development of scientific tools that
will analyse, simulate, and integrate data and models, particularly focusing on the incorporation of
digital twins.
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9.2

smartSE

In the context of the smartSE initiative, project that Soth East Technological University was part of, the

model associated with digital twins relies on creating a smart city experimental facility. The smartSE

facility aims to serve as a living lab that leverages high-quality, reliable data to simulate and optimize

urban systems and processes. The specific tools identified in the document that can be transferred and

replicated include:

1.

Data Analytic Services: This offering includes advanced technology and analytical platforms
that can be utilized to process real-time data and support the creation and management of
digital twins.

Smart City Experimental Sandbox: This environment allows for testing concepts using
regional data, which can be instrumental in simulating and optimizing the physical systems
represented by digital twins.

Innovation Imaginarium: This design-led program fosters startup creation, which may involve
the development of new tools and technologies applicable to digital twin applications.

Data Platform: This platform facilitates data trading and sharing, which is essential for the
effective functioning of digital twins, as they rely on accurate and timely data from various
sources.

These components from the smartSE initiative can be transferred and replicated to support the

development of digital twin technologies in other contexts, particularly in smart city applications. The

focus on data, innovation, and collaboration within the project enhances the potential for creating

effective digital twin solutions.

SmartSE highlights several key aspects that relate to the concept of a model in digital twins:

1.

9.3.

Data-Driven Approach: The smartSE initiative focuses on utilizing data to inform decision-
making and enhance public service, which is essential for creating accurate digital
representations of physical systems.

Collaboration and Co-Creation: The project emphasizes co-creation across various
stakeholders, including local government, private enterprises, and citizens. This collaborative
approach is vital for developing comprehensive models that accurately reflect the complexities
of urban systems.

Focus on Sustainability: The smartSE initiative aims to address sustainability challenges
through data-driven insights, which suggests that the models developed will incorporate
environmental factors and performance metrics relevant to sustainability goals.

Experimental Laboratories: The facility offers experimental laboratories where new
processes, products, and business ideas can be tested. This aspect indicates that
mathematical models will likely be employed to simulate the behaviour of these innovations in
a controlled environment.

Cupla Tra

Cupla Tra, project that Soth East Technological University was part of, employs digital twin technology
for environmental analysis in a coastal region of County Waterford, Ireland. several functionalities and
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methodologies that can be considered as tools or components of the digital twin framework are
identified:

1. Digital Twin Platform: The project aims to develop and implement a digital twin platform that
maps the current and natural environment of the area. This platform will integrate various
datasets, which suggests the use of software tools for data integration and visualization.

2. Datalntegration Tools: The project will incorporate existing environmental datasets and socio-
economic data from various sources, indicating the need for tools that can aggregate and
harmonize data from different governing bodies and organizations.

3. Predictive Analysis Tools: The document mentions the ability to conduct predictive analysis of
the inter-dependent factors affecting the environment. This implies the use of analytical tools
capable of modeling and simulating different scenarios based on the integrated data.

4. Interactive “Mission Room”: The project includes an immersive, interactive space for
stakeholder awareness and participation, which suggests the use of visualization and
simulation tools that allow users to interact with the digital twin in a meaningful way.

5. Monitoring Tools: The document references the importance of monitoring greenhouse gases
and river health, indicating the need for real-time data processing and monitoring tools that can
track environmental changes and impacts.

In the context of the "Cupla Tra" project, the model identified refers to the digital twin platform that aims
to create a comprehensive and holistic representation of the coastal region in County Waterford,
Ireland. This model is designed to simulate and analyze both human and non-human behavioral
patterns and interactions within the environment.

9.4. Evolve-Evalue

UCV Evolve-Evalue aims to combine two digital twins for medical training. It utilizes the CAE Maestro
Evolve platform for interactive simulations with virtual patients and an evaluation tool for assessing
student performance. The goal is to enhance medical education and training through realistic
simulations and assessments.

The tools for digital twin technologies identified in the project include:

1. CAE Maestro Evolve Software: This software serves as an interactive virtual learning platform
that facilitates medical training and content development. It allows for the creation of virtual
patients and medical equipment, as well as the implementation of various teaching tools and
pre-programmed Simulated Clinical Experiences (SCEs). However, it is noted that the current
access is in demonstration mode, which limits its use.

2. UCV Evalua Application: This application is developed specifically for the university and
includes a pool of approximately 500 questions for evaluating student performance. It allows
teachers to organize pre- and post-simulation exams, customizing the number and difficulty of
questions based on an extensive question pool.

These tools can be transferred and replicated in other contexts by adapting the software and
application functionalities to meet the specific needs of different educational or training environments,
particularly in medical training. The integration of these tools can enhance the simulation and
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evaluation processes in various settings.

The model identified pertains to the digital twin for medical simulation training. Specifically, it involves
the CAE Maestro Evolve platform, which serves as an interactive virtual learning environment. This
model allows for the creation of virtual patients, where various pathologies and physiological
responses can be assigned and altered based on student interactions.

Despite the promising benefits, the projects also highlight common challenges, such as the complexity
of data integration, the need for robust infrastructure, and the importance of stakeholder collaboration.
Collectively, these initiatives underscore the necessity of interdisciplinary approaches and innovative
solutions to address the multifaceted challenges faced by coastal and urban areas, ultimately aiming
for improved decision-making and sustainable development.

10. Conclusion

For Digital Twins, tools used regarding sectors of built environment, agriculture, life sciences, and
medical applications are generally of the same six types. Sensors, loT devices, Data transmission, Data
storage and processing, Simulation and modelling, Machine Learning and Prediction. The main
difference between the sectors are the usage of specific sensors and loT devices depending on the
desired type of information that is to be collected (building parameters, soil data, biological signals).
When it comes to data transmission and storage, all sectors use a mix between cellular, Wi-Fi and
LoRaWAN for transmission and cloud-based platforms for storage and processing purposes. Cloud-
based platforms are popular in digital twin applications in all sectors due to their scalability, real-time
data access, and ability to integrate various systems and stakeholders. These platforms can efficiently
handle large volumes of data generated by sensors and loT devices, storing, processing, and analyzing
itin a centralized location. Usage of Python and MATLAB is seen to be very common in Machine Learning
and Prediction for all sectors. The focus of machine learning and prediction in digital twin applications
is centered on specific areas for different industries. In the built environment, it is primarily aimed at
predictive maintenance, optimizing asset lifespan and reducing downtime. For agriculture, the focus is
on growth prediction and soil concentration to enhance crop yields and monitor soil health. In life
sciences and medical applications, machine learning is used to predict physical activity and monitor
biological parameters, enabling personalized healthcare and early detection of medical conditions.

For interdisciplinary research, PhD candidates can be encouraged to pursue interdisciplinary research
that spans across the built environment, agriculture, life sciences, and medical applications. For
instance, a PhD candidate could work on developing advanced machine learning algorithms for
predictive maintenance in the built environment, while also exploring their applications in healthcare
for predictive physical activity or biological parameter monitoring. Cotutelle programs can be
structured to encourage candidates to work at the intersection of multiple sectors. For example, a joint
program between universities in engineering and life sciences could allow students to develop and
apply loT and sensor technologies for both smart buildings and health diagnostics, fostering cross-
disciplinary expertise.

Regarding sensors and loT devices, PhD candidates could work on the development and optimization
of sensors and loT devices, with a focus on their specific applications in various sectors. For example,
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a student might research sensor innovations for agriculture (e.g., for soil concentration and growth
prediction) or medical devices that track biological signals.

Cotutelle programs could encourage research on sensor technologies that can be applied universally
across sectors but tailored to the needs of each (e.g., sensors for environmental monitoring in
agriculture and built environments or wearable health-monitoring devices).

When predictive technologies and innovation is considered, growth prediction, and biological
parameter monitoring are central themes in all sectors, PhD candidates could develop innovative
predictive technologies using machine learning, loT, and simulation models to improve accuracy and
functionality. For example, a focus on predictive analytics to anticipate equipment failure in the built
environment or predictive health monitoring in medical applications could significantly advance these
fields. Students in cotutelle programs can focus on predictive technologies that can be adapted across
sectors, fostering innovation that could lead to global breakthroughs in healthcare, agriculture, and
infrastructure management.
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