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1. Executive summary 

This document outlines the selection of existing data-intensive models and tools relevant to digital twin 
technologies, particularly in the context of the EU-CONEXUS ENABLES project. It emphasizes the 
importance of digital twins in various sectors, including the built environment, agriculture, and life 
sciences. 

Digital twins are virtual replicas that simulate real-world systems, allowing for real-time monitoring, 
predictive maintenance, and enhanced decision-making. The report discusses how these technologies 
can optimize operations, improve sustainability, and facilitate knowledge transfer among partners 
involved in the project. Key areas of focus include the integration of data from sensors and IoT devices, 
which enables better management of resources and infrastructure.  

The document emphasizes the importance of knowledge transfer from non-widening partners, 
highlighting their initiatives in developing digital twin models that integrate real-time data, simulations, 
and predictive analytics. Some chapters involve reviewing existing digital twin models and tools to 
identify those that align with the project goals and have the potential to be transferred and replicated.  

Overall, the framework serves as a guide for leveraging digital twin technologies to address specific 
challenges and enhance knowledge sharing across various domains. 

2. Introduction 

This document is organized into several key sections that systematically address the selection and 
application of data-intensive models and tools relevant to digital twin technologies within the context 
of the EU-CONEXUS ENABLES project. 

Specific applications of digital twins are presented in the sections, starting with the Built Environment, 
which explores how digital twins can enhance infrastructure management and urban planning. This is 
followed by a detailed examination of Agriculture and Life Sciences and Medical Applications, 
highlighting the transformative potential of digital twins in optimizing agricultural practices and 
improving healthcare outcomes. 

The document also includes a Comparison of Tools utilized across these sectors, providing insights 
into the commonalities and differences in their implementation. Additionally, it discusses Models 
Used in Digital Twins, focusing on the methodologies that support these technologies. 

A dedicated section on Digital Twin Models Identified in Non-Widening EU-CONEXUS Partners show 
initiatives from various partners, emphasizing collaborative efforts in developing digital twin 
applications. The document concludes with a Conclusion that synthesizes the insights presented and 
reflects on the implications for future research and practice. 

Overall, the structured approach of the document facilitates a comprehensive understanding of digital 
twin technologies, their applications, and the collaborative frameworks necessary for effective 
knowledge transfer among partners. 



      

3. Built Environment in Digital Twins 

The built environment refers to the physical surroundings in which people live, work, and interact, 
including buildings, infrastructure, and public spaces. In the context of digital twins, the built 
environment is represented as a digital replica that simulates the real-world properties, conditions, and 
behaviors of these structures. By integrating data from sensors, IoT devices, and other sources, digital 
twins of the built environment enable real-time monitoring, predictive maintenance, energy 
optimization, and enhanced decision-making for managing infrastructure and urban spaces more 
efficiently. This digital representation allows for better planning, management, and sustainability of 
cities and buildings. 

3.1. Digital Twin Examples in the Built Environment 

Structural Design Management 

DT can be used to improve the design, construction monitoring and maintenance of structures. In this 
case, digital twins can be used to create a 3D model of the building and update it using real-time data. 
This will allow the engineers and managers to simulate, analyze and optimize the design of the structure 
by making their decisions based on up-to-date data. Currently, the most widely used models for 
structural design are Building Information Models (BIM) and Computer Aided Design (CAD) models. DT 
can provide the following depending on the desired output: 

• Virtual Construction Sequencing 
• Cost and Schedule Optimization 
• Condition Assessment 
• Predictive Maintenance 
• Load and Stress Analysis 
• Energy Efficiency and Sustainability 
• Structural Performance Over Time 

Thus, engineers have a great amount of control over the design and physical performance of the 
structure.  

Energy Design and Energy Management 

Digital twins provide a virtual model that can simulate and optimize energy consumption patterns, 
environmental impact, and the integration of renewable energy sources in a building or infrastructure 
before physical construction. The focus here is on design optimization to improve energy efficiency. In 
the planning and design stage of buildings or infrastructure, digital twins can simulate various energy 
consumption scenarios based on architectural layouts, materials used, building orientation, climate 
conditions, and occupancy patterns. Thus, energy design and management need to be done in 
combination with structural design for optimal building performance in terms of both energy and 
load/stress. Potential usage of DT in Energy design and management are as follows: 

• Simulating Energy Consumption in the Design Phase 
• Optimizing Building Orientation and Architecture 
• Integrating Renewable Energy Sources 



      

• Real-time Energy Monitoring and Control 
• Predictive Maintenance of Energy Systems 
• Demand Response and Grid Integration 
• Carbon Emissions Monitoring 

 

Facility Management 

Digital twins are increasingly being used in facility management (FM) to enhance operational efficiency, 
reduce costs, improve sustainability, and optimize space utilization. By creating a real-time virtual 
model of a facility, a digital twin helps facility managers monitor, manage, and improve the performance 
of buildings, equipment, and infrastructure. By integrating real-time data from IoT sensors within a 
building to continuously monitor environmental conditions, energy usage, equipment status, and 
occupant behavior, the twin reflects the live status of all building systems, including HVAC, lighting, 
water systems, and security. For FM, occupancy modeling is especially useful for simulating the 
behavioral patterns of the occupants in the building to optimize the working space and energy 
expenditure. Most popular modeling technique used for this is Agent-Based Modelling (ABM). The 
following can be achieved for FM by using DT: 

• Building Performance Monitoring 
• Centralized Control of Building Systems 
• Space Usage Analytics 
• Flexible Space Management 
• Asset Tracking and Lifecycle Management 
• Energy Optimization 
• Occupant Experience and Comfort 

 

Sustainability Management 

Digital twins are a powerful tool for sustainability management, helping organizations and cities 
monitor, optimize, and reduce their environmental impact. From tracking carbon footprints and energy 
use to optimizing water consumption and waste management, digital twins enable smarter decision-
making that drives sustainability goals. By simulating and analyzing the environmental effects of various 
actions, they support organizations in achieving long-term sustainability while reducing costs and 
enhancing resilience. Sustainability management is included through each stage of the lifecycle of a 
building (Design, construction, operation, demolition) thus, a few different modeling techniques and 
tools are necessary to use digital twins in sustainability management. Different stages require different 
tools and models to be observed, demonstrated and evaluated. An extensive list of tools is currently 
used for sustainability management. The following are achieved by using DT in sustainability 
management: 

• Real-time Carbon Emissions Tracking 
• Scenario Simulations for Carbon Reduction 
• Energy Optimization and Monitoring 
• Renewable Energy Integration 
• Water Resource Simulation and Management 



      

• Waste Tracking and Management 
• Lifecycle Assessment and Circularity 
• Smart City Energy and Resource Management 
• Traffic and Emission Management 
• Environmental Impact Assessment (EIA) 

 

Safety Management 

For safety management, digital twins provide a way of simulating different loads and stresses in the 
built environment to find out the safe operating range. Digital twins track the condition of buildings, 
bridges, and other infrastructure in real-time. Sensors embedded in structures can monitor stress, 
strain, temperature, and vibration, which are critical for detecting early signs of wear or potential failure, 
such as cracks or instability. It is also possible to perform risk assessment and evacuation/hazard 
procedures by using digital twins. The tools included are usually related to the 3d design aspect of the 
built environment as well as sensors and IoT devices to collect and connect data in one cloud. The uses 
of DT in safety management are as follows: 

• Real-Time Monitoring and Risk Detection 
• Simulation of Emergency Scenarios and Evacuation Plans 
• Predictive Maintenance and Inspections 
• Resilience and Disaster Recovery 
• Occupant Safety and Behavior Tracking 
• Energy and Fire Risk Management 
• Post-Incident Analysis and Recovery 

 

Smart city/smart building management 

A smart building uses its intelligence to collect actionable data from user devices, sensors, systems, 
and services on the premises. The smart city does the same thing on a larger scale. Digital twins track 
the performance of HVAC systems, elevators, lighting, and security systems in a building. This enables 
building managers to monitor operational health, detect potential failures, and schedule preventive 
maintenance before equipment breaks down, reducing downtime and enhancing safety. In urban 
environments, digital twins of bridges, roads, water pipes, and other infrastructure assets monitor their 
condition in real-time. They help predict when maintenance is needed, preventing costly repairs and 
ensuring public safety. For example, sensors embedded in roads can alert authorities about potholes 
or structural damage. Currently, the most used models are physics-based, agent and computational 
fluid dynamics models. The following are the current uses for DT models in safety management 

• Real-Time Monitoring and Predictive Maintenance 
• Simulation of Urban and Building Environments 
• Energy Management and Sustainability 
• Improving Public Safety and Security 
• Urban Planning and Development 
• Sustainability and Environmental Management 



      

Construction Management (refers to the construction stage of a project) 

Digital twins are used to transform construction management by providing real-time insights, improving 
safety, optimizing resources, and enhancing collaboration. DT extends the capabilities of Building 
Information Modeling (BIM) by integrating real-time data with 3D models. These models evolve with the 
construction process, allowing teams to visualize changes and updates in real time. The simulation of 
different construction scenarios is enabled such that various design alternatives, material choices, or 
construction methods can be tested. Project stakeholders can test and visualize the impact of these 
decisions before implementation. From design and planning through construction to post-completion 
facility management, DTs enable better decision-making, reduce risks, and improve overall efficiency. 
Platforms like Autodesk Forge, Siemens MindSphere, Bentley iTwin, and Trimble Connect are at the 
forefront of this revolution, making construction projects smarter, safer, and more sustainable. The 
following are the potential and common uses for DT in construction management. 

• Design and Planning Optimization 
• Real-Time Monitoring and Progress Tracking 
• Predictive Maintenance and Asset Management 
• Safety Management and Risk Mitigation 
• Project Scheduling and Optimization 
• Collaboration and Communication 
• Environmental Impact and Sustainability 

 

Transport Management 

In transport management, to optimize traffic flow, enhance safety, reduce emissions, and improve 
overall efficiency. In the context of smart cities, they serve as real-time virtual replicas of transportation 
systems, such as road networks, rail systems, airports, and public transit. By integrating real-time data 
from sensors, cameras, and vehicles, digital twins allow authorities and planners to simulate and 
optimize transportation operations. Thus, transport management can be seen as a subcategory of 
smart city management. It provides city planners, and logistics operators with a powerful tool to 
improve safety, efficiency, and sustainability in modern urban and transport systems. Usually, the 
models used are agent-based models paired with a 3d model for visualization of infrastructure and the 
roads/pathways. Here are the most common current uses of DT in Transport Management. [1] 

• Traffic Flow Optimization 
• Public Transportation Management 
• Autonomous Vehicles and Smart Mobility 
• Rail and Metro System Optimization 
• Aviation and Airport Management 
• Emergency and Incident Management 



      

 
Figure 1. Digital Twin Practices in Built Environment 

3.2. Tools Used for Built Environment 

In the context of Digital Twins, a tool refers to the technologies, platforms, and software applications 
used to create, maintain, analyze, and interact with a digital twin. Digital twins are virtual models or 
simulations that replicate physical objects, systems, or processes in real time, and tools are essential 
for bridging the gap between the physical and digital worlds. In the built environment, 6 types of tools 
are used most frequently. These are sensors, IoT devices, data transmission, data storage and 
processing, simulation and modeling, machine learning and predictive tools. 

3.2.1. Sensors 

A sensor is a device that detects, measures, and records physical properties from its surrounding 
environment, converting these properties into readable data that can be processed and analyzed. 
Sensors can measure a wide range of physical variables, such as temperature, pressure, motion, 
humidity, light, sound, force, and more. There are several types of sensors used for the creation of 
digital twins. These include temperature, flow, pressure, vibration, humidity, current, voltage, stress 
and strain sensors. These sensors collect information on real-time data about physical assets, 
systems, and environmental conditions. These sensors play a critical role in creating accurate digital 
representations of energy assets, such as power plants, wind turbines, and electrical grids, by feeding 
data into digital twin models for monitoring, control, and predictive maintenance. So, sensors are the 
vital link between the physical and digital worlds in a digital twin system. They enable real-time data 
collection, which keeps the digital twin up to date, allowing for monitoring, analysis, prediction, and 
optimization of the physical system or asset. Sensors are also integral parts of IoT devices like smart 
meters. [2] 

3.2.2. IoT Devices 
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An IoT (Internet of Things) device is a physical device that is embedded with sensors, software, and 
communication technology, enabling it to collect data from its environment and transmit that data over 
the Internet or other networks. These devices can range from simple household gadgets like smart 
thermostats to complex industrial machines that monitor production processes. IoT devices 
communicate with other devices, systems, or applications, creating a network of connected objects 
that can share information and work together. In the context of digital twins, IoT devices play a critical 
role in facilitating real-time data transfer from the physical object, environment, or system to its digital 
counterpart. They are responsible for providing the data that keeps the digital twin synchronized with 
its physical counterpart. By embedding IoT devices in physical assets (such as machines, vehicles, or 
infrastructure), a continuous stream of data is sent to the digital twin, enabling real-time monitoring, 
analysis, and decision-making.[3] 

3.2.3. Data Transmission 

A data transmission tool is any technology, protocol, or system used to transfer data from one location 
to another. This can include a variety of methods, such as wireless communication, wired networks, or 
cloud-based systems. In the context of digital twins, data transmission tools are crucial for ensuring 
that the real-time data collected by sensors and IoT devices is reliably transmitted to the digital twin for 
processing, analysis, and updates. In a digital twin environment, data transmission tools facilitate the 
flow of information between the physical object (or system) and its virtual counterpart. These tools 
enable seamless and continuous communication between sensors, IoT devices, edge devices, and the 
digital twin platform. Data transmission can occur over the internet, through cellular networks (e.g., 4G, 
5G), via satellite, or through local networks (e.g., Wi-Fi, Ethernet, or Bluetooth).[4] 

3.2.4. Data Storage and Processing 

A data storage and processing tool is any system, platform, or technology that enables the collection, 
organization, management, and analysis of large volumes of data. In the context of digital twins, these 
tools are critical for storing the vast amounts of data generated by sensors, IoT devices, and other data 
sources, and for processing this data to extract meaningful insights. In a digital twin environment, data 
storage and processing tools play a pivotal role in managing the continuous inflow of data from the 
physical asset or system and enabling real-time analysis, simulations, and decision-making. They 
ensure that data is securely stored and efficiently processed so that the digital twin can perform its 
functions, such as monitoring, predicting, and optimizing the behavior of its physical counterpart.[5] 

3.2.5. Simulation and Modelling 

A simulation and modeling tool is a software application or platform that allows the creation, testing, 
and analysis of virtual representations (models) of physical objects, systems, or processes. These tools 
enable users to replicate real-world behaviors in a digital environment, allowing for experimentation 
and scenario testing without affecting the actual physical system 

In a digital twin, simulation and modeling tools serve as the backbone for building, analyzing, and 
enhancing the virtual representation of a physical object or system. They help in creating a realistic, 
data-driven model of the asset, which can then be used to simulate real-world conditions, test potential 
changes, and predict future states. Simulation and modeling tools integrate data from various sources 
(such as sensors, IoT devices, and historical records) into the digital twin, allowing for dynamic 
simulations that evolve with the real-time condition of the physical asset.[6] 



      

3.2.6. Machine Learning and Predicting 

A machine learning (ML) and predictive tool is a software or platform that uses data-driven algorithms 
and statistical models to identify patterns, make predictions, and generate insights. These tools learn 
from historical and real-time data to improve decision-making, automate processes, and anticipate 
future outcomes. In the context of digital twins, ML and predictive tools are vital for enabling the digital 
twin to forecast the behavior of physical systems, optimize performance, and detect anomalies. In a 
digital twin, machine learning models analyze large datasets, which often come from sensors and IoT 
devices monitoring the physical object. These tools allow digital twins to evolve beyond static 
representations into intelligent systems capable of self-improvement, predictive maintenance, and 
real-time optimization. ML and predictive tools continuously refine their models based on new data, 
allowing the digital twin to improve over time. By using historical and real-time data, digital twins can 
make accurate predictions about future states, detect potential failures, and suggest optimal 
strategies for improving performance. [7] 

 

Figure 2. Tools Used for Built Environment  



      

3.3. Case Studies in Built Environment 

This section includes digital twin technology used in 4 different case studies in the built environment. 
The tools used are explained for each case study and a table is presented at the end to visualize the 
differences and similarities between them. 

 Khatib & Alami, Digital Twin of Muscat (Smart city infrastructure) 

By combining GIS, BIM, predictive analytics, IoT sensors, real-time monitoring, AI, and cloud-based 
platforms, Khatib & Alami's digital twin for Muscat was designed to provide comprehensive urban 
management solutions. The digital twin helps improve security, flood preparedness, and overall city 
infrastructure resilience. Drones were employed to take aerial images of the city to map the geography 
and the position of the buildings in the city. IoT sensors were employed to enable real-time data 
collection and monitoring across the city’s infrastructure. These sensors provided critical insights into 
the operations of urban systems such as traffic management, utilities, water networks, and 
environmental conditions. Esri ArcGIS was used for integration of geographical real-time data into the 
digital twin. Bentley's LumenRT was then employed to animate the digital twin, enabling simulations 
such as flooding and day/night cycles for real-world scenario planning, helping the government improve 
preparedness for climate-related disasters and secure strategic areas. [8] 

 AEGEA, Brazil’s Largest Sanitation Map (Sanitation and utilities) 

AEGEA is a leading private company in Brazil's sanitation sector, and it is behind the creation of the 
country’s largest and most comprehensive sanitation map, designed to improve water supply, sewage 
treatment, and overall sanitation infrastructure. A digital twin of the city and water-based infrastructure 
was created. The digital twin leverages a digital tool called ContextCapture and Bentleys open modeling 
tools for processing over 150000 photos and generating a 3D reality mesh. Real-time data is fed into the 
system using various sensors to detect water level and quality. ContextCapture uses photogrammetry 
to convert 2D images into 3D models. It processes aerial photos, drone footage, or ground-level images 
to generate accurate representations of physical environments. ContextCapture models are used 
within Bentley’s iTwin Platform, which is a comprehensive digital twin environment. iTwin allows users 
to collaborate, analyze, and visualize digital twins in real time, using data generated from 
ContextCapture models as a baseline. [9][10][11] 

 The Edge, Deloitte HQ, Amsterdam (Smart building and energy efficiency) 

The Edge, Deloitte’s headquarters in Amsterdam, is renowned for being one of the world’s smartest and 
most sustainable buildings. The digital twin of The Edge integrates advanced technologies and data-
driven methods to manage the building's operations efficiently. The tools used include a wide range of 
IoT sensors that were embedded throughout the building to capture real-time data on occupancy, 
temperature, humidity, lighting, and energy consumption. The digital twin is tightly integrated with the 
Building Management System (BMS), which controls key mechanical and electrical systems such as 
HVAC (Heating, Ventilation, and Air Conditioning), elevators, and lighting. Siemens Building Automation 
systems and Schneider Electric's EcoStruxure are the tools used that are designed to optimize energy 
use and comfort. Data collected from sensors and the BMS is analyzed using advanced analytics and 
machine learning algorithms. The specific tool used is Microsoft Azure, which acts as the cloud 
platform for storing and processing the building’s data, enabling real-time analytics and historical data 
analysis. A 3D Building Information Model (BIM) is used to create a digital representation of the physical 



      
structure of The Edge. Autodesk’s Revit was used for BIM modeling, as it is commonly used for creating 
architectural and MEP (mechanical, electrical, plumbing) models. To handle the massive data flows 
generated by the sensors, cloud and edge computing solutions are used to process data efficiently and 
in real time. Microsoft Azure Cloud is central to The Edge’s digital twin for storing, processing, and 
analyzing large volumes of data. [12] 

 Bristol City Leap Smart Buildings (Energy management for public buildings) 

The Bristol City Leap project is a large-scale initiative aimed at decarbonizing the city of Bristol, UK, by 
implementing smart building technologies, including digital twins. The digital twin aspect of this project 
involves creating virtual replicas of municipal buildings to optimize energy use, improve sustainability, 
and reduce carbon emissions. Sensors used include devices for monitoring energy consumption, 
environmental conditions (temperature, humidity, air quality), occupancy, and equipment status (e.g., 
boilers, HVAC units). The digital twin integrates with the building management systems to control 
critical infrastructure like HVAC, lighting, and electrical systems. Schneider Electric BMS platforms 
were used that can interface with IoT networks, enabling real-time control and automation. For energy 
management, platforms like Schneider Electric's EcoStruxure specifically designed to support energy 
efficiency were used to meet the sustainability goals. 3D BIM is used to create a detailed virtual 
representation of the building, which includes architectural, structural, and operational data. Autodesk 
Revit was the tool employed for this function. For cloud computing and edge processing, Microsoft 
Azure IoT was used where it provides the cloud infrastructure for processing and storing building data. 
It enables real-time monitoring, predictive maintenance, and historical analysis of building 
performance. For integration, Microsoft Azure Digital Twins was used as a comprehensive platform that 
integrates IoT devices, AI models, and BIM data to create a dynamic digital twin for smart buildings. [13] 

 Johnson Controls Headquarters, Shanghai, China (Facility Management) 

The Johnson Controls Headquarters in Shanghai, China is a state-of-the-art smart building that 
integrates digital twin technology to enhance energy efficiency, sustainability, and occupant comfort. 
As a global leader in smart buildings and sustainability, Johnson Controls leverages advanced IoT, AI, 
and machine learning technologies within its headquarters to create a highly connected, data-driven 
building environment. This digital twin implementation aligns with Johnson Controls' OpenBlue 
platform, a suite of connected solutions aimed at optimizing building performance and reducing 
environmental impact. The headquarters is a prime example of how digital twins can contribute to 
smart building management, sustainability, and energy optimization.  

Key Features of the Digital Twin Implementation: 

1. Building Management Optimization: The digital twin platform monitors and manages various 
building systems like HVAC, lighting, energy consumption, and occupant behavior in real-
time. By continuously gathering data from a network of IoT sensors, the digital twin creates a 
dynamic virtual model of the building that helps optimize operations and reduce energy waste. 

2. IoT-Enabled Devices: The building utilizes an extensive array of smart sensors and IoT devices 
to track temperature, humidity, air quality, occupancy, and energy consumption. These devices 
communicate through Wi-Fi, Zigbee, and other protocols to a central management system, 
providing real-time insights into the building’s performance. 

3. AI and Machine Learning: AI-powered algorithms are used to predict building energy 



      
demands, optimize resource consumption, and schedule predictive maintenance. By analyzing 
historical data and forecasting patterns of use, the digital twin can adjust HVAC, lighting, and 
other systems proactively, reducing operational costs and improving sustainability. 

4. Energy Efficiency and Sustainability: One of the main goals of the digital twin is to enhance 
energy efficiency. By simulating different operational scenarios, the twin enables energy 
savings by optimizing system performance in response to external factors like weather and 
internal factors like occupancy. 

5. Occupant Comfort: Through real-time occupancy sensing and predictive algorithms, the 
building automatically adjusts temperature, lighting, and air quality to ensure optimal comfort 
for occupants while minimizing unnecessary energy use. 

6. Edge and Cloud Computing: Data collected from IoT devices is processed using a combination 
of edge computing for immediate, local responses and cloud computing for large-scale data 
analysis and predictive modeling. [14] 

 Siemensstadt 2.0, Berlin, Germany (Smart City Management) 

Siemensstadt 2.0 in Berlin, Germany is an ambitious smart city project initiated by Siemens, 
transforming the historic Siemensstadt district into a modern urban innovation hub. The project, 
spanning over 70 hectares, integrates digital twin technology, IoT, and AI to create a connected and 
sustainable living environment. Siemensstadt 2.0 is envisioned as a center for smart industry, 
education, and research, while promoting green technologies and energy efficiency. 

For the creation of a digital twin, Siemensstadt 2.0 utilizes tools like Siemens MindSphere, a cloud-
based IoT operating system, for gathering and analyzing data from a vast network of sensors and IoT 
devices. Building Information Modeling (BIM) is used to develop detailed digital representations of 
buildings and infrastructure, allowing for simulations of energy usage and urban planning. Edge 
computing ensures real-time data processing at the source, minimizing latency in decision-making, 
while AI-driven predictive analytics help optimize the performance of energy grids and building 
management systems by anticipating future demands and failures. This combination of advanced tools 
enables the creation of dynamic, responsive models that support the sustainable management of 
Siemensstadt. [15, 16]. 

 Forth Bridges Digital Twin Project, Scotland (Smart City Infrastructure) 

The Forth Bridges Digital Twin Project is a Scottish initiative that creates a digital replica of the three 
iconic Forth bridges—Forth Rail Bridge, Forth Road Bridge, and Queensferry Crossing. This digital twin 
uses advanced 3D modeling and sensor data to mirror the real-time conditions of the bridges, allowing 
for efficient monitoring, predictive maintenance, and improved safety management. By simulating 
structural responses to environmental factors like weather and traffic, the project enhances 
infrastructure management, reduces operational costs, and supports the longevity and resilience of 
these critical transport links. 

The Forth Bridges Digital Twin Project employs a sophisticated array of tools for creating a detailed and 
functional digital twin. The use of advanced sensors (e.g., strain gauges, accelerometers), IoT platforms 
(like Libelium Waspmote), and data transmission technologies (5G, LoRaWAN) ensures real-time 
monitoring. Data storage and processing take place in Microsoft Azure, while simulation and modeling 
tools like Autodesk InfraWorks and ANSYS allow detailed simulations. Finally, predictive maintenance 



      
is powered by machine learning and AI tools such as TensorFlow and Azure Machine Learning, providing 
a comprehensive digital twin solution for ensuring the long-term safety and functionality of the bridges. 
[17, 18] 

 Ezhou Huahu International Airport (Construction Management) 

China utilized Bentley Systems' iTwin platform and BIM technology to create a comprehensive digital 
twin. This project had to manage 25 million model components and multiple stakeholders across 
various disciplines. The digital twin facilitated efficient collaboration, reducing delivery times by 90 days 
and saving $12 million. By integrating real-time data and workflows, the digital twin improved 
productivity by 25% and solved thousands of operational issues, which saved an additional $300 
million. This helped in achieving lifecycle management and optimized project coordination and 
execution. 

The digital twin for Ezhou Huahu International Airport was developed using Bentley Systems’ tools, 
specifically the iTwin Platform for integrating massive datasets, including 25 million model 
components. This platform allowed for a cohesive, real-time collaborative environment that managed 
the airport’s lifecycle from design to operation. OpenRoads was used for professional modeling, 
ProStructures for structural coordination, and Navigator to ensure seamless collaboration with on-site 
teams. Together, these tools streamlined multi-source data handling, reduced model delivery times by 
90 days, and enhanced productivity by 25%, allowing the team to address thousands of coordination 
issues and save approximately $300 million [19, 20]. 

 Digital Twin Setup in the Roma Termini Railway Station (Safety Management) 

The case study focuses on developing a simulation-based digital twin (DT) for Roma Termini railway 
station to enhance pedestrian safety and crowd management. This DT leverages real-time data from 
IoT-enabled devices like security gates, escalators, and ticket machines, integrating them through a 
Station Management System (SEM) that collects and processes live data. Using AnyLogic software, the 
DT simulates pedestrian flows, predicts congestion, and provides early warnings and evacuation 
recommendations. It dynamically adjusts to real-world conditions, enabling proactive decision-making 
for station managers to manage crowd safety effectively, optimize gate configurations, and allocate 
resources based on crowd density and flow patterns. [21] 

Sensors and IoT Devices: The system utilizes security gates, escalators, and ticket machines as IoT-
enabled devices to gather data on passenger flows and asset status. The Station Management System 
(SEM) integrates these physical assets, providing data on gate status, escalator functionality, and 
platform occupancy. 
Data Transmission: The system leverages RESTful APIs and WebSockets to facilitate data exchange, 
using formats such as JSON, XML, RDF, and CSV to standardize communication across the station's 
digital and physical components. 
Data Storage and Processing: A Data Integration Middleware layer aggregates and processes data 
from various station systems, ensuring interoperability between the simulation engine, incident 
management, and operational management systems. 
Simulation and Modelling: AnyLogic is the primary tool for simulation, used here for crowd modeling 
and congestion prediction. AnyLogic’s Pedestrian Library, Process Modeling Library, and Agent-based 
Modeling Library enable detailed simulation of pedestrian flows and interactions, reflecting real-world 
crowd dynamics. 



      
Machine Learning and Prediction: Although traditional machine learning is not employed for 
prediction, AnyLogic’s simulation capabilities incorporate real-time updates from SEM. This integration 
allows the digital twin to dynamically adjust predictions based on current crowd conditions, effectively 
providing proactive safety insights. 

3.4. Comparison of Case Studies 

Tabel 1. Illustrates the tools and methods used in Johnson Controls Headquarters, Shanghai, 
China Siemensstadt 2.0, Berlin, Germany Forth Bridges Digital Twin Project, Scotland Ezhou 

Huahu International Airport, China. 

Case Study 
Johnson Controls 

Headquarters, 
Shanghai, China 

Siemensstadt 
2.0, Berlin, 
Germany 

Forth Bridges 
Digital Twin 

Project, Scotland 

Ezhou Huahu 
International 

Airport, China 

Sensors 

Occupancy, 
Temperature, 
Humidity, Air 

Quality, Lighting 

Humidity, 
Temperature, 
Lighting, Gas, 

CO2 

Strain gauges, 
Accelerometer, 
Anemometer, 

Temperature, Load 

Laser Scanners 
and LiDAR, GPS 
and Geolocation 

Sensors, 
temperature, 

humidity sensors 

IoT Devices 

Smart HVAC 
Systems, Smart 
Lighting, Energy 

Meters 

Smart HVAC 
Systems, Smart 

Lighting Systems, 
Connected 

Mobility Devices 

Libelium 
Waspmote IoT 

platform, Cisco IoT 
gateways 

Smart 
Wearables, 

GPS Trackers, 
Drones 

Data 
Transmission 

Wi-Fi and Ethernet 
Networks, igbee 

and Bluetooth Low 
Energy, Building 

Automation 
Systems (BAS) 

Protocols 

5G Networks, 
LoRaWAN 

Protocol, Wi-Fi 
and Ethernet 

Networks 

5G and LoRaWAN, 
Fiber-optic 
networks 

LoRaWAN, Wi-Fi 
amd Bluetooth. 

Data Storage 
and 

Processing 

Cloud Computing 
(Microsoft Azure), 
Edge Computing 

Cloud Computing 
(Siemens 

MindSphere), 

HBM (Hottinger 
Baldwin 

Messtechnik), 
Microsoft Azure 

Cloud, Azure Data 
Lake 

Azure Blob 
Storage, Data 

Lake, AWS 
Kinesis and Azure 
Stream Analytics 

Simulation 
and Modelling 

Building 
Information 

Modeling (BIM) by 
Autodesk Revit, 

EnergyPlus or 
TRNSYS for energy 

flow simulation 

Building 
Information 

Modeling (BIM), 
Energy Modeling 

Software 
(Siemens PSS® 

SINCAL and 
EnergyPlus) 

Building 
Information 

Modeling (BIM), 
Autodesk 

InfraWorks, 
Bentley Systems 
ContextCapture 

OpenRoads,  
ProStructures, 

Machine 
Learning and 

Prediction 

OpenBlue AI 
Platform 

Siemens 
MindSphere 

IBM Watson IoT 
Platform, Microsoft 

Azure Machine 
Learning 

TensorFlow or 
PyTorch 



      
 
Sensors & IoT: Johnson Controls uses its OpenBlue suite with extensive HVAC and security sensors to 
optimize indoor air quality and energy use. Siemensstadt employs a network of sensors for urban-level 
insights into energy, mobility, and sustainability, incorporating IoT to monitor environmental and urban 
conditions. For Forth Bridges, sensors track structural integrity, including stress and weather data to 
manage bridge health and safety. Ezhou Huahu Airport integrates sensors for real-time logistics and 
operational monitoring, essential for managing high-traffic airports. 

Data Transmission & Storage: Both Johnson Controls and Siemensstadt rely on cloud-based 
solutions. OpenBlue’s real-time platform provides Johnson Controls with continuous updates, while 
Siemensstadt leverages Siemens’ cloud to centralize smart city data. The Forth Bridges project uses a 
cloud system by Digital Catapult for ongoing structural health, and Ezhou Airport combines edge and 
cloud storage for rapid data access and storage. 

Modeling & Simulation: Siemensstadt incorporates simulations for urban planning to design eco-
friendly structures and predict energy needs. Forth Bridges uses a digital model for predictive 
maintenance on bridge conditions. Johnson Controls uses simulation within OpenBlue for energy and 
space utilization, while Ezhou Airport models flight and passenger flow to maintain efficient airport 
operations. 

Machine Learning & Prediction: Machine learning in OpenBlue at Johnson Controls supports 
predictive maintenance and adaptive environment management. Siemensstadt applies AI-driven 
analytics to anticipate urban resource demands, and Forth Bridges uses AI to predict maintenance 
needs, ensuring infrastructure safety. Ezhou Airport applies AI to manage logistical workflows, 
predicting peak times and optimizing passenger processing. 

Case Study 
Khatib & Alami, 
Digital Twin of 

Muscat0 

AEGEA, Brazil’s 
Largest Sanitation 

Map 

The Edge, 
Deloitte HQ, 
Amsterdam 

Bristol City Leap 
Smart Buildings 

Sensors 

Cameras, Motion 
Detectors, Air 

Quality and 
Weather, 

Electricity, Water 

Smart Water Meter, 
Flow, Water 

Quality, Pressure 

Occupancy, 
HVAC, Light, 
Temperature, 

Humidity, Motion 

Energy Usage, Air 
Quality, 

Temperature, 
Energy 

Consumption, 
CO2 

IoT Devices 

Smart city 
sensors for real-
time urban data 

collection, Smart 
meters for 

utilities 

Smart sanitation 
monitoring 

systems, Water 
flow monitoring 

and leakage 
detection meters 

Smart meters for 
building 

management and 
control systems, 

Devices for 
lighting, HVAC, 
and occupancy 

tracking 

Smart meters for 
real-time energy 

monitoring in 
buildings, IoT-

enabled 
thermostats, 
smart lighting 

Data 
Transmission 

Cellular, Wi-Fi, 
LoRaWAN for 

low-power, long-
range 

transmission for 

LoRaWAN, cellular 
networks for cloud-
based transmission 

Wi-Fi, Bluetooth, 
Zigbee for cloud-

based 
transmission 

Wi-Fi, LoRaWAN, 
cellular networks 
for cloud-based 

transmission 



      

Tabel 2.  Illustrates the tools and methods used in Khatib & Alami, Digital Twin of Muscat AEGEA, 
Brazil’s Largest Sanitation Map, The Edge, Deloitte HQ, Amsterdam, Bristol City Leap Smart 

Buildings. 

 
Sensors and IoT Devices: All projects heavily rely on IoT sensors for real-time data collection. Khatib 
& Alami and AEGEA focus on urban and utility infrastructure, while The Edge and Bristol City Leap focus 
more on building and energy management. 
Data Transmission: Across all projects, Wi-Fi and cellular networks are essential for data 
transmission. Low-power networks like LoRaWAN are used in Bristol and AEGEA for long-range and 
energy-efficient transmission. 
Data Storage and Processing: Cloud storage and processing are critical across the board, with AWS, 
Azure, and other cloud platforms used to manage vast datasets in real time. 
Simulation Tools: 3D modeling tools such as Bentley ContextCapture and Autodesk Revit for BIM 
are used for simulating infrastructure and building management. These simulations optimize urban 
planning in Muscat, energy efficiency in Edge and sanitation infrastructure in Brazil. 
Machine Learning and Prediction: AI and machine learning are applied for predictive maintenance and 
energy optimization. In Bristol and Edge these techniques are particularly focused on energy 
forecasting and efficiency, while in AEGEA, they help identify water loss and optimize sanitation 
services. 

Case Study 
Khatib & Alami, 
Digital Twin of 

Muscat0 

AEGEA, Brazil’s 
Largest Sanitation 

Map 

The Edge, 
Deloitte HQ, 
Amsterdam 

Bristol City Leap 
Smart Buildings 

cloud-based 
transmission 

Data Storage 
and 

Processing 

Cloud storage 
(AWS, Azure) for 

localized 
databases for 
infrastructure 

metadata 

Cloud storage 
systems for vast 

datasets (Azure) for 
High-volume, high-

precision 
databases for asset 

data 

Cloud storage 
systems for vast 

datasets 
(Azure) for High-

volume, high-
precision 

databases for 
asset data 

Cloud-based 
storage 

integrated with 
smart building 

systems 

Simulation 
and Modelling 

Esri ArcGIS for 
urban planning 

simulations and 
models 

Bentley 
ContextCapture for 

3D modeling and 
Virtual reality (VR) 
for asset lifecycle 

management 

Autodesk Revit for 
BIM, Siemens 

Building 
Automation 

system for energy 
simulation and 

modelling 

Autodesk Revit 
for BIM, 

Schneider 
Electric's 

EcoStruxure for 
energy simulation 

platforms for 
forecasting and 

optimization 

Machine 
Learning and 

Prediction 

AI algorithms for 
predictive 

maintenance 
(Python, 
MATLAB) 

Machine learning 
for water loss 
detection and 

network 
optimization 

(Python, MATLAB) 

Machine learning 
for energy 

efficiency (Python, 
MATLAB) 

AI for predicting 
energy demand 
and optimizing 

building systems 
(Python, MATLAB) 



      

4. Agriculture in Digital Twins 

In the context of digital twins, agriculture refers to the use of digital replicas to simulate and monitor 
farming systems, crops, and livestock. By integrating data from sensors, weather forecasts, soil 
conditions, and machinery, digital twins enable farmers to optimize crop yields, manage resources 
efficiently, and predict future outcomes. These digital models help improve decision-making in areas 
like irrigation, pest control, and fertilizer application, leading to more sustainable and productive 
farming practices. Ultimately, digital twins in agriculture enhance the precision and efficiency of 
operations, contributing to smarter farming and better management of agricultural ecosystems. 

Smart agriculture (SA), the increasing use of information technologies, sensors, autonomous vehicles, 
data analytics, predictive modeling, and other digital technologies related to agricultural activities – has 
been strongly argued for to significantly contribute to increased food security, reduced water 
consumption, reduced fertilizer and pesticide input, and increased farm profitability. Despite this, the 
adoption rate of smart agricultural technologies is still low and varies significantly according to the 
specific technology and the geographical area considered [22]. Smart farming consequently is a 
comprehensive approach to agriculture that utilizes a diverse range of technologies. It is necessary to 
integrate tools such as the Internet of Things, artificial intelligence, and automation. When we talk 
about automation, we need to understand all the processes in a complex agroecosystem. A SA creates 
a sophisticated and interconnected farming ecosystem. Precision agriculture (PA) is a subset of SA. In 
a broader sense (PA) is a farm management approach that necessarily leans on use of digital 
techniques with a specific focus on monitoring and optimizing agricultural production processes.  

To better monitor the inclusion of digital twins (DTs) in smart agriculture with a contribution towards its 
sustainability, it is necessary to distinguish the development of agriculture from its beginnings to the 
current stage through an approach from agriculture 1.0 to 5.0. (R)evolution of agricultural activities in 
developed countries, which encompasses all the major technological innovations is listed below: 

• Agriculture 1.0 (until 1920): manual workforce and animal traction. 
• Agriculture 2.0 (1920–1960): motorization, introduction and dissemination of tractor innovations 

(diesel engine, three-point hitch, tires), but manual workforce still prominent; 
• Agriculture 3.0 (1960–1980): mechanization, improvement of tractors (higher power, operating 

machines for all production activities), improvements in genetics, rapid replacement of the 
manual workforce; 

• Agriculture 4.0 (precision agriculture) (1980–2000): improvement of operating machines, greater 
attention to the human-machine relationship (safety and ergonomics), the introduction of on-
board electronic control systems in tractors, first attempts of digitized/computerized 
management of the farm (never fully and widely consolidated, except in specific sectors such as 
zootechnics); 

• Agriculture 5.0 (smart agriculture) (after 2000): consolidation of electronics and automation (in 
mobile user-point processes), diffusion of sensors for monitoring activities and on-board 
positioning systems in tractors, communication protocols between different devices, in-silico 
simulations for gene modeling and traceability, deep learning to increase agricultural productivity 
[22]. 

Agriculture 5.0 therefore throws consolidation of electronics and, sensors for monitoring activities and 



      
on-board positioning systems, communication protocols between different devices, here a new 
perspective opens up, and that is how, based on known automated processes and collected large 
amounts of data, an environment can be created in which predictions or future events (e.g. due to 
climate extremes) could be simulated and prevented by decision-makers. A digital twins approach can 
be the next step in developing SA as an Agriculture 5.0.  

Digital twins provide previously unheard levels of control over physical entities and help to manage 
complex systems by integrating an array of technologies. Recently, agriculture has seen several 
technological advancements, but it is still unclear if this community is trying to adopt digital twins in its 
operations [23]. 

Digital Twins serve as virtual counterparts, replicating the characteristics and functionalities of tangible 
objects, processes, or systems within the digital space, leveraging their capability to simulate and 
forecast real-world behavior [24]. This advanced digital technology has found different applications in 
SF, facilitating a comprehensive virtual replica of a farm. It can adapt and encompass vital aspects such 
as:  soil composition, weather conditions, crop cultivation measures, crop developing vegetation 
phases. By joining data from diverse sources: soil, plant conditions, environmental and meteorological 
sensor networks and high-resolution UAV and Satellite imagery, farmers gain access to dynamic and 
up-to-date visualization of their agricultural domains. All this empowers them to make well-informed 
and timely decision making. Farmers are more reliable in their soil conditions, irrigation plans, optimal 
fertilization methods, and other cultivation measures, then effective pest management strategies, all 
this is for the purpose of enhancing overall farm productivity and sustainability. 

As virtual replicas of physical objects or systems, DTs represent a highly promising advancement in this 
field. In SA, digital twins enable agriculture experts, researchers, and farmers to simulate various 
scenarios, test different strategies, and predict outcomes accurately. DTs in smart farming offer 
transformative possibilities, revolutionizing crop cultivation and management while enabling 
optimization of resource utilization, minimizing environmental footprint, and enhancing crop yields for 
a sustainable and efficient agricultural ecosystem [25]. In this context, the DT is uniquely positioned to 
overcome these challenges and support the goals of sustainability. Through the use of state-of-the-art 
technologies, increased information availability can empower stakeholders to pursue sustainable 
objectives and production methods [26]. A DT can provide the following depending on the desired 
output. 

• Real-time monitoring and Predictive Maintenance (soil performance, weather influence, 
agriculture measures implementing, culture development, harvest and post-harvest 
maintenance) 

• Sustainability and Environmental Management (biodiversity, soil fertility, environmental 
pollution/degradation) 

• Safety Management and Risk Mitigation (food safety, work safety, farmer's welfare, etc.) 
• Project Scheduling and Optimization (decision support and socio-economic welfare of farmers, 

farms and rural areas) 
• Collaboration and Communication (improvements in responses to the demanding 

administrative and development component of the common EU agricultural policy). 
• DT can provide the following depending on the desired output. 

The key components and interactions of DT in agriculture, important for their role in data collection, 



      
preprocessing, modeling, simulation, analytics, decision support, visualization, and control, with aim 
in optimizing farm operations and improving decision-making processes are: technology for creating 
reality, artificial intelligence (AI), communication technologies, the connection between the real twin 
and the DT, distributed Ledger Technologies (DLT) and Blockchain, cloud, IoT, simulating software. 

 Technology for creating reality 

DTs rely on augmented (AR), virtual (VR), and mixed-reality (MR) technologies. As an example, they can 
be created using three-dimensional (3D) technologies and presented as holograms or experienced 
through AR/VR/MR devices, such as the Microsoft HoloLens. Using sensors installed in the field, their 
real-time digital twin can be generated and projected as a hologram in remote locations. This enables 
individuals in different locations to engage in interactions that simulate being physically present in the 
same space [27]. 

 Artificial Intelligence 

Artificial Intelligence (AI) integration into physical assets that lack it inherently is a key advantage of DTs. 
This introduces a specialized intelligence capable of efficiently comprehending vast amounts of 
numerical data and deriving domain-specific insights faster than human experts. Consequently, the 
data obtained from the digital twin’s surroundings and physical counterpart should lead to valuable and 
actionable conclusions [28]. 

 Communication Technologies and Schemes 

DTs rely on communication technologies and schemes to facilitate interaction with the environment, 
their physical twins, and other DTs on a real-time basis. Effective communication must occasionally 
occur within a millisecond (ms) timeframe. This is particularly significant in the realm of wireless 
communication. A necessitating compliance with 5G and tactile internet standards is needed. Then 
another need for stringent communication standards, lead to a growing demand for repeatable and 
cost-effective verification procedures [24]. 

 Reliability, Integrity, and Credibility 

Reliability, integrity, and credibility are pivotal when DTs are entrusted with sensitive tasks involving 
transaction management with their real counterparts. It becomes imperative for the real twin to 
establish a sense of trust in their DT's capabilities and actions. Building and maintaining a solid 
connection between the real twin and the DT is crucial to fostering effective collaboration, enabling 
reliable decision-making, and ensuring secure interactions. Consequently, a strong foundation of trust 
becomes indispensable for the successful operation and advancement of DT-enabled systems [29]. 

 Distributed Ledger Technologies and Blockchain 

In recent times, Distributed Ledger Technologies (DLT), such as blockchain [30], have emerged to add 
to user authentication and data integrity regarding data sharing. To unlock its full potential and achieve 
its envisioned advantages, addressing outstanding concerns surrounding the technology is imperative. 
DLT offers a decentralized approach that eliminates the need for a central authority or database, 
distinguishing it from traditional data-sharing methods [30].  

 Cloud Computing 

Cloud computing presents a valuable opportunity for DTs to enhance their scalability and availability, 



      
assisting their real twins anytime and anywhere. By leveraging cloud computing infrastructures, 
computation and control tasks can be offloaded from the local environment to remote servers, enabling 
DTs to handle complex processes and ensure seamless availability efficiently. The scalability of DTs is 
significantly improved through cloud computing, as the computational resources can be dynamically 
allocated and scaled based on demand [24]. 

 Internet of Things 

Internet of Things (IoT) with 5G and the Tactile Internet (TI) entity meanings have emerged as ground-
breaking technologies, ushering in a new era of communication with their focus on ultra-high reliability 
and ultra-low latency. The Tactile Internet (TI) is an emerging area of research involving 5G and beyond 
(B5G) communications to enable real-time interaction of haptic data over the Internet between tactile 
ends, with audio-visual data as feedback. This shift in communication paradigms from content-
oriented to control-oriented is especially significant for applications that involve human-in-the-loop 
interactions, demanding minimal delays and seamless integration of communication and control 
mechanisms as demanded in DT infrastructure [24]. 

 Modelling and Simulation Software 

A DT could be addressed as a tight combination of (1) an object model, in conjunction with (2) an 
expansive set of data that is directly following the object that may evolve, and finally, (3) a method for 
modifying and refining the model based on the available data [31]. The experts decide the need and 
selection of the training, validation and verification data concerning specific case studies, types of soil, 
plant types, leaf area, plant height, regarding the Physical Twin, or technological use cases [24, 31]. 

4.1. Digital Twin Examples in Agriculture 

Growth Prediction/Optimization 

The first way to apply DTs in agriculture is to create a crop DT, which can for example predict growth or 
yield (Laryukhin et al. 2019). Skobelev et al. (2020) integrated the ability to adapt to changing 
environmental conditions. Decision support is another topic that works as DTs (Moghadam et al. 2020). 
The “Digital Potato” is a tool with which a potato harvester can be adjusted so that the potatoes are not 
damaged during harvesting (Kampker et al. 2019). In addition, Barnard (2019) created a digital twin of 
an indoor garden that calculates the ideal conditions for plants to grow. It uses the data gathered by a 
gardening robot such as humidity and nutrient content of the soil as well as simulations to determine 
what the robot has to do to ensure that each plant gets exactly the right quantity of nutrients and water 
it needs for ideal growth. The data gathered, the algorithms and the digital twin itself are saved in the 
cloud.  

• Environmental adaptation 

• Growth time and efficiency prediction 

• Damage Prevention 

• Harvest Efficiency 

• Nutrition optimization 

Water Quality Management 



      
DTs can be used in aquaculture or aquaponics for monitoring water quality (Niswar et al. 2018; Ahmed 
et al. 2019). In aquaculture and aquaponics, digital twins are used to monitor water quality by 
integrating real-time data from various sensors placed in water tanks or systems. These sensors 
measure critical parameters such as temperature, pH levels, dissolved oxygen, salinity, and ammonia 
concentrations, which are essential for maintaining a healthy environment for aquatic life. The digital 
twin model simulates and visualizes these conditions in real-time, allowing for continuous monitoring 
and early detection of potential issues. By leveraging data-driven insights, farmers can optimize water 
quality, adjust filtration systems, and ensure the health of both fish and plants in aquaponic systems, 
leading to more sustainable and efficient operations. 

• Predict water quality changes 

• Simulate water conditions 

• Optimize filtration and aeration systems 

• Track long-term water quality 

• Detect potential danger signs 

Livestock Wellbeing 

Another study used a DT for the well-being of livestock by controlling the conditions in a barn (Jo et al. 
2018). DTs can also be used for vertical farming (Monteiro et al. 2018). DTs can also be used in urban 
areas. They were used for monitoring an underground urban farm and for urban beekeeping (Jans-Singh 
et al. 2020; Johannsen et al. 2021). Another application was the digital twin of a cow that makes 
predictions for heat, estrus and health according to its behavior. It is working based on data from a 
pedometer attached to the cow as well as company provided location services that accurately detect 
the cow’s movement Kruize (2018). 

• Environmental condition monitoring 

• Improve animal health 

• Enhance comfort 

• Predict health risks 

• Optimize breeding 

• Monitor behavior  

• Support herd management 

Unmanned Ground Vehicles 

Tsolakis et al. (2019) created a digital twin to emulate the use of unmanned ground vehicles in fields. It 
accepts the actual landscape of a field as input by utilizing digital elevation models retrieved from Open 
Street Maps. It recreates the 3D model of the field along with possible additions like trees and static 
objects. It contains a predefined selection of commercially available unmanned ground vehicles which 
a farmer can test on the virtual field to find the most efficient for their case.  

• Emulate vehicle operation 



      

• Create Field Models 

• Optimize UGV selection 

• Improve operational efficiency 

• Enhances decision making 

Stock Balance for Self-Contained Environment 

Tan et al. (2019) used a digital twin of a self-contained aquaponics production unit. The purpose of this 
digital twin is to balance the fish stock and plants in the unit by monitoring them and controlling the unit 
automatically. The digital twin uses temperature, light intensity, water flow, pH and dissolved salts 
sensed data. The virtual unit performs simulations of fish feed, fish weight gain, pH, nitrates and plant 
growth as what-if scenarios to find optimizations on the behavior of the whole system. It does this for 
production maximization, waste minimization, water conservation, meeting quality standards and 
other production goals. In their work, Machl et al. (2019) used a digital twin of the cultivated landscape 
to support planners in designing agricultural road networks. The digital twin finds the road network 
segments with high relevance for agricultural transportation helping planners to modernize these 
segments according to the agricultural needs. The digital twin creates an information model (described 
as a UML class) by coupling spatiotemporal information of the cultivated landscape with complex 
analytical methods.  

• Optimizing production goal 

• Simulating system response 

• Improving system efficiency 

• Simulating environmental conditions 

4.2. Tools Used for Digital Twins in Agriculture 

 
4.2.1. Sensors 

In agriculture, sensors are vital for gathering real-time data from the field. These sensors measure 
various parameters such as soil moisture, temperature, pH, and nutrient levels. Soil moisture sensors, 
for example, help farmers determine when to irrigate crops, ensuring water is used efficiently. 
Temperature and pH sensors monitor soil health, which is critical for optimizing crop growth. Other 
sensors can also track weather conditions like rainfall and humidity, providing farmers with insights to 
make more informed decisions about planting, harvesting, and pest management. 

4.2.2. IoT devices 

IoT devices in agriculture enable the seamless transmission of data collected by sensors to central 
systems for monitoring and analysis. These devices connect sensors on the field with cloud platforms, 
allowing farmers to access real-time data remotely via smartphones or computers. For instance, smart 
irrigation systems powered by IoT devices can automatically adjust watering schedules based on soil 
moisture levels, optimizing water usage and reducing waste. IoT devices also help in monitoring 
environmental factors, like temperature and humidity, in greenhouses, improving the overall efficiency 
of farming operations. 



      

4.2.3. Data Transmission 

In agriculture, data transmission is essential for ensuring that data collected from various sensors and 
IoT devices reaches the central storage or processing systems. Technologies like cellular networks, Wi-
Fi, and LoRaWAN are commonly used to transmit data from the field to cloud platforms or local data 
hubs. These systems enable the remote monitoring of crops and soil conditions, even in remote areas. 
By ensuring reliable data transmission, farmers can make timely decisions based on real-time 
information, whether it's adjusting irrigation schedules or responding to changing weather patterns. 

4.2.4. Data Storage and Processing 

Data storage and processing systems are fundamental in agriculture to manage the large volumes of 
data generated by sensors and IoT devices. Cloud-based platforms are often used to store this data 
securely, enabling farmers to access and analyze it from anywhere. Advanced data processing 
techniques help convert raw data into actionable insights, such as predicting crop yields, identifying 
potential pests, or determining optimal planting times. By efficiently managing and processing 
agricultural data, farmers can improve operational efficiency and make more informed decisions about 
crop management and resource allocation. 

4.2.5. Simulation and Modelling 

Simulation and modeling tools are used in agriculture to predict and optimize farming practices. These 
models simulate various environmental conditions and their effects on crops, such as predicting the 
impact of weather, soil quality, and irrigation methods on crop yield. Using these tools, farmers can test 
different scenarios, such as adjusting irrigation schedules or planting different crop varieties, to 
determine the most effective strategies for maximizing yield and reducing resource waste. Simulation 
helps in making data-driven decisions that can improve productivity while minimizing environmental 
impact. 

4.2.6. Machine Learning and Prediction 

Machine learning and prediction technologies in agriculture are used to analyze data and predict future 
trends or potential issues. For example, machine learning algorithms can predict crop yields based on 
factors such as soil conditions, weather patterns, and historical data. Predictive models can also help 
identify the likelihood of pests or diseases before they affect crops, enabling early intervention. 
Additionally, machine learning can optimize irrigation schedules, forecast fertilizer needs, and assist in 
precision farming by providing data-driven insights that improve crop management and resource 
efficiency. (Saiz-Rubio et al. 2020).(Purcell and Neubauer 2023). (Martos et al. 2021).  (Catala-Roman 
et al. 2024). Catala-Roman et al. (2024) chose OpenDroneMap to be the best software, because of its 
best quality-to-features ratio and its low cost-benefit ratio.  

4.3. Case Studies in Agriculture 

DT in sustainable agriculture are according to many authors [22, 23, 24] in primary stages and are not 
developed enough to offer all the benefits that other human activity areas (building, energetic sector 
etc.) enjoy. Exceptions included some deployed applications that were part of a European Union-
funded program [23]. There is still a long way to go before the agricultural community can fully rely on 
the benefits of DT. Agricultural researchers and stakeholders should make an effort to stay up to date 
with technological advancements and seek to find links between agricultural problems, and problems 
that are solved with DT in other disciplines [23]. But scientific reviews mostly describe: plant nutrition 
or crop development as the most interesting and already adjusted to get first DT solutions. It is a subset 
in the sense of precision agriculture, but more broadly we see it as a SA solution for the whole farm, due 



      
to the complexity DT will be around for a long time in what we hope is a nearer but certainly some kind 
of future in sustainable agriculture. An example of a case study for nitrogen (N) fertilization described 
has wider importance [23]. 

The importance of the environmental issues associated with N management in crops, has been known 
for a long time. The productivity of plants is strongly dependent on the availability of N, but crop use 
efficiency of N is low and can result in significant N releases to the environment. This is an 
environmental, farmer and food safety issue, and has large administrative and policy-making effort. The 
N fertilization of crops has seen a growth trend. The impact of fertilizer-derived N, is associated with 
water pollution and the release of greenhouse gases in major crop-producing regions of the world [32], 
There is a clear requirement for a more innovative approach to optimize efficient crop N-fertilization and 
restrict N loss to the environment, made more urgent with the need for an agriculture transition towards 
greater environmental, economic, and social sustainability [23]. 

The case study considers tools such as: global positioning systems (GPS), geographic information 
systems (GIS) and remote sensing (RS), yield monitoring, and soil performance parameters as provided 
data to build up a reasonably accurate picture of spatial area variability. For a more detailed 
representation of the area/field (a precondition to the evaluation and potentially varying application of 
N), the cultivated surface can be divided into more uniform management zones by using the overlay of 
various thematic maps such as the spatial variability of area, soil properties, crop growth and yield [23]. 

When the potential management scenarios and their uncertainty are available, the farmer can 
implement the most sustainable management practice based on both an economic and environmental 
standpoint, which may include tradeoffs between net revenue and environmental outcomes such as 
nitrate leaching [33]. As an example, if a digital twin (i.e., a validated crop simulation model) using past 
observed weather data determines that in 24 out of the last 30 years (80%) a fertilization rate of 
150 kg N/ha gives a yield of 10Mg/ha, the farmer may choose to apply 150 kg N/ ha knowing that there 
is a 20% possibility (6 years out of 30) that applying a higher N fertilization rate would (statistically) result 
in a higher yield [23].  

In conclusion, the DT technology will hardly be able to cover the entire agricultural production on one 
farm or in one agro-ecosystem, so it is necessary to consider which concept of the application of DT in 
agriculture we are talking about. In [23] authors arrange till now published papers in seven (28) groups. 
They are as follows: Energy consumption analysis (analyze the energy consumption of the physical 
system and find ways to minimize it); System failure analysis and prediction (analyze the data coming 
from a system to identify the source of failure or when the system is going to need maintenance); 
Optimization/update (find the optimal parameters for the operation of a system and update it to run 
with those parameters); Behavior analysis/user operation guide (analyze human-made operations and 
provide feedback); Technology integration (bring together different already deployed technologies 
under the same umbrella to control and visualize operations more easily); Virtual maintenance (allow 
users to virtually test different maintenance strategies to find the least intrusive one) [23]. 

  LDAS-MV 

The LDAS-MV project in Mecklenburg Western Pomerania focuses on refining agricultural yield 
forecasts and managing the water cycle. Leveraging data assimilation techniques within a digital twin 
framework, it integrates land surface models, satellite remote sensing data, and near-seasonal 
weather predictions. This fusion allows for the accurate prediction of sub-daily surface conditions, 



      
facilitating informed decision-making for agricultural management practices and water resource 
allocation. 

 NATURE-DEMO 

The NATURE-DEMO project, in which University of Rostock was involved, aims to enhance sustainable 
infrastructure development by integrating advanced digital twin technologies, specifically within alpine 
areas, with a focus on methods transferable to coastal environments. The core intention of the project 
is to create accurate digital replicas of both built infrastructure and their natural surroundings using 
graph neural network (GNN) models. These digital twins facilitate better planning and management by 
automating the development and refinement of sustainable building designs and environmental 
models. By leveraging GNNs, the project seeks to capture complex causal relationships within the 
infrastructure and environmental systems, enabling more precise predictions and decision-making. 
The digital twins incorporate data from various sources, including remote sensing and high-precision 
3D measurement systems, to monitor and optimize operations, thus contributing to the sustainability 
and resilience of infrastructure against climate threats such as water stress, floods, and droughts. 

Implementing digital twin technology within the NATURE-DEMO project involves several significant 
challenges. One primary challenge is automating the configuration of GNN models to accurately reflect 
the causal structures of real-world systems, as opposed to merely identifying correlations. This 
requires sophisticated methodologies for deriving semantic models from diverse data sources to 
ensure the digital twins are both accurate and useful. Another challenge is the integration of data from 
different sources into cohesive graph models, which is essential for effective behavior predictions and 
actionable insights. Processing and managing large datasets necessitate advanced IT infrastructure 
and expertise, particularly in developing and deploying AI models. Additionally, the ongoing 
development and validation of the digital twins against real-world measurements require rigorous 
control measurements and continuous refinement, adding complexity and demanding a high level of 
precision and expertise. Addressing these challenges is crucial for leveraging the full potential of digital 
twin technology in promoting sustainable infrastructure development and environmental protection. 

5. Life Sciences and Medical Applications in Digital Twins 

In the context of digital twins, life sciences and medical applications involve creating virtual replicas of 
biological systems, organs, or patients to simulate, monitor, and analyze their health and behaviors. 
These digital models integrate data from medical imaging, patient records, wearables, and genetic 
information to enable personalized treatment, disease prediction, and surgical planning. Digital twins 
in healthcare can help optimize clinical outcomes by providing real-time insights into patient 
conditions, predicting disease progression, and testing treatment strategies in a risk-free virtual 
environment. This approach enhances precision medicine, improves patient care, and accelerates 
medical research and development. 

5.1. Digital Twin Examples in Life Sciences and Medical Applications 

Personalized Healthcare Models 

Digital twins are used to create virtual models of individual patients by integrating medical data such as 



      
genetic information, medical history, and real-time health data (e.g., from wearables). These models 
help healthcare providers tailor treatments and interventions to the specific needs of each patient, 
improving outcomes and minimizing side effects. 

• Tailored treatment 

• Minimized side effects 

• Faster Diagnosis 

• Efficient resource allocation 

• Optimized dosage 

• Chronic disease management 

Organ Simulation for Medical Training 

Digital twins of organs, such as the heart or liver, are created to simulate human anatomy and 
physiology. These models are used for medical training, surgical planning, and research, allowing 
doctors to practice procedures or test medical devices without risk to real patients. 

• Surgical Planning 

• Testing medical devices 

• Minimized surgical risk 

• Medical Education 

• Reduced learning curve 

• Access to complex cases 

Predictive Health Monitoring 

By combining data from wearable devices, sensors, and electronic health records, digital twins can 
continuously monitor a patient's vital signs (e.g., heart rate, blood pressure, glucose levels). These 
models can predict potential health issues, such as heart attacks, strokes, or diabetes complications, 
enabling early intervention and proactive care. 

• Continuous Monitoring  

• Early detection 

• Real-time alerts 

• Preventive healthcare 

• Proactive care 

Drug Development and Testing 

Digital twins are used in the pharmaceutical industry to simulate the human body’s response to new 
drugs. By modeling individual patients’ responses to different treatments, researchers can predict how 
new drugs will behave, test efficacy, and identify potential side effects before clinical trials, speeding 
up drug development. 



      

• Personalized drug testing 

• Simulate drug response 

• Simulate drug efficacy 

• Increased cost-effectiveness 

• Potential side effect identification 

• Simulate long-term effects 

Surgical Planning and Simulation 

Surgeons can use digital twins to simulate complex surgeries. These models replicate the patient's 
anatomy and conditions, helping surgeons plan the procedure more accurately, anticipate challenges, 
and reduce the risk of complications during actual surgery. 

• Increased accuracy 

• Preoperative visualization 

• Surgical challenge identification 

• Surgical risk reduction 

• Increased time efficiency 

• Personalized Surgery 

Patient-Specific Prosthetics and Implants 

Digital twins of individual patients can be created to design and customize prosthetics or implants that 
match their unique anatomical features. This results in better-fitting devices that improve functionality, 
comfort, and overall patient satisfaction. 

• Improved comfort 

• Enhanced functionality 

• Improved surgical planning 

• Faster recovery 

• Reduced risk of complications 

• Increased patient satisfaction 

Chronic Disease Management 

Digital twins can be used to manage chronic diseases like asthma, diabetes, or cardiovascular 
conditions. These models integrate continuous data from monitoring devices and predict disease 
progression, enabling personalized management plans that are adjusted in real-time based on the 
patient’s current condition. 

• Progression prediction 

• Real-time adjustments to treatment 



      

• Improved medication management 

• Reduction in hospitalization 

• Long-term health management 

Epidemiology and Disease Spread Simulation 

Digital twins can be applied in public health to model the spread of infectious diseases. By creating 
virtual populations with specific health data, these models can simulate disease transmission, predict 
outbreaks, and help policymakers make data-driven decisions to manage and mitigate public health 
crises. 

• Disease transmission modelling 

• Outbreak prediction 

• Targeted intervention strategies 

• Medical resource allocation 

• Preventive measure impact evaluation 

Digital twins in life sciences and medical applications are transforming healthcare by creating dynamic 
virtual replicas of patients, organs, and entire systems, enabling more accurate diagnosis, personalized 
treatment, and improved operational efficiency. These virtual models integrate data from various 
sources, including medical history, genetic profiles, diagnostic imaging, and real-time information from 
wearable devices, providing clinicians with detailed, patient-specific simulations. In personalized 
medicine, digital twins allow for the simulation of different treatment options, helping doctors to predict 
how individual patients will respond to various therapies or surgeries.  

 

For instance, using a digital twin of a patient's heart, physicians can plan cardiac procedures with 
greater precision and tailor interventions to the specific needs of the individual, minimizing risk and 
improving outcomes. 

Beyond individual patient care, digital twins are playing a key role in accelerating drug development and 
optimizing clinical trials. By creating virtual models of organs or even specific cells, researchers can 
test how new drugs interact with the body, predict efficacy, and identify potential side effects before 
clinical trials begin. This approach reduces the reliance on animal testing, speeds up the process of 
drug discovery, and helps in the design of more targeted therapies. Companies like Insilico Medicine 
use AI-driven digital twins to simulate how drugs will affect various biological systems, helping identify 
the most promising drug candidates early in the process. 

In the realm of surgery, digital twins are used for pre-surgical planning and simulation, allowing 
surgeons to rehearse complex procedures virtually before performing them. Technologies like Surgical 
Theater and Materialize offer 3D models of patient anatomy based on imaging data, such as MRIs or CT 
scans, enabling surgeons to visualize and practice procedures, reducing errors and enhancing 
precision. These tools are particularly useful for intricate surgeries, such as neurosurgery or orthopedic 
procedures, where detailed planning and visualization can significantly improve patient outcomes. 

Digital twins also play a critical role in the continuous monitoring and optimization of medical devices. 



      
For example, digital twins of medical devices, like pacemakers or insulin pumps, can be used to monitor 
real-time performance, detect potential malfunctions, and predict when maintenance or upgrades are 
needed. By integrating sensor data from these devices, manufacturers and healthcare providers can 
ensure that equipment is functioning optimally, leading to better patient safety and device longevity. 
Companies like Medtronic leverage digital twin technology to enhance the performance and reliability 
of their medical devices. 

In addition to individual care, digital twins are being used to optimize healthcare systems at large. 
Hospitals and clinics are using digital twins to simulate and improve patient flow, resource allocation, 
and staff scheduling. For example, virtual models of hospital operations allow administrators to predict 
patient demand, optimize bed utilization, and improve the overall efficiency of healthcare delivery. This 
approach helps reduce waiting times, streamline processes, and ensure that resources are being used 
effectively, ultimately improving the quality of care and patient satisfaction. 

On a larger scale, digital twins are being applied to public health and epidemiology, where they help 
track disease trends, simulate disease spread, and predict health outcomes across populations. 
During the COVID-19 pandemic, digital twin models of the virus's spread were used to inform policies, 
optimize healthcare resource deployment, and plan interventions, helping public health authorities 
respond more effectively to the crisis. Similarly, digital twins are used to model the spread of infectious 
diseases, allowing for better preparedness and targeted public health responses. 

Wearable devices, such as smartwatches and fitness trackers, also contribute to the creation of 
personal digital twins by continuously gathering data on key health metrics like heart rate, sleep 
patterns, physical activity, and blood sugar levels. This real-time data can be integrated into a digital 
twin model to provide ongoing insights into a patient’s health, enabling proactive interventions and 
personalized health recommendations. For example, wearables integrated with digital twin technology 
can alert both patients and healthcare providers to early signs of health issues, such as a rise in blood 
pressure or irregular heart rhythms, allowing for timely treatment and prevention. 

 

In oncology, digital twins are proving invaluable by simulating tumor growth and predicting how a 
specific tumor will respond to various treatments, including chemotherapy, radiation, or 
immunotherapy. By creating digital models of tumors and their surrounding tissue, clinicians can 
explore different treatment options, optimize dosages, and reduce side effects. This technology 
enables personalized cancer care, where treatment plans are specifically tailored to the unique 
characteristics of a patient's cancer, improving the chances of a successful outcome. Companies like 
Kheiron Medical Technologies are using digital twins to model breast cancer tumors and predict how 
they will respond to different interventions. 

5.2. Tools Used for Digital Twins in Life Sciences and Medical Applications 
5.2.1. Sensors 

In the life sciences and medical fields, sensors are used to monitor a patient’s real-time physiological 
parameters, such as heart rate, blood pressure, glucose levels, oxygen saturation, temperature, and 
brain activity. Wearable sensors, such as those in fitness trackers or medical devices (e.g., continuous 
glucose monitors), collect data that is crucial for continuous health monitoring, chronic disease 
management, and early detection of medical conditions. 



      

5.2.2. IoT Devices 

IoT (Internet of Things) devices in healthcare connect medical equipment, wearables, and patient 
monitoring systems to the Internet, enabling the continuous collection of data. Examples include smart 
thermometers, ECG monitors, insulin pumps, and pulse oximeters. These devices transmit real-time 
data to healthcare providers, offering insights into a patient's condition remotely. IoT is especially 
important in managing chronic conditions and enabling telemedicine, where doctors can remotely 
monitor patients and adjust treatment plans. 

5.2.3. Data Transmission 

Data transmission is crucial for transferring the collected sensor and device data from patients to 
healthcare systems or cloud platforms. This typically involves wireless technologies like Wi-Fi, 
Bluetooth, 5G, or LoRaWAN. The data is transmitted securely to ensure privacy, enabling real-time 
monitoring, quick response to changes in patient condition, and integration of health data across 
systems for decision-making. Data transmission is essential for remote patient monitoring, 
telemedicine, and the integration of wearable health technology with healthcare providers' IT systems. 

5.2.4. Data Storage and Processing 

The data collected from sensors and IoT devices is stored and processed in centralized cloud-based 
platforms or on-premise servers. Cloud computing allows healthcare professionals to access large 
volumes of patient data from multiple sources in real time. This centralized data storage supports the 
analysis of health trends, monitoring of chronic conditions, and predictive modeling. Processing this 
data enables insights into patient health, helping doctors make informed decisions, track patient 
progress, and develop personalized treatment plans. Cloud-based systems are also scalable, allowing 
health organizations to manage vast amounts of data efficiently. 

5.2.5. Simulation and Modelling 

Simulation and modeling tools are used to replicate complex biological systems and human anatomy 
to better understand diseases, predict health outcomes, and design effective interventions. For 
example, digital twins of organs or entire patients allow for surgical planning, drug testing, or organ 
transplantation simulation. These tools help in the development of new medical technologies, 
personalized medicine, and understanding the progression of diseases. Simulations can also be used 
to predict the impact of lifestyle changes or medication adjustments on a patient's health. 

5.2.6. Machine Learning and Prediction 

Machine learning (ML) and predictive analytics are key components in the life sciences and medical 
fields for analyzing large datasets and making predictions about patient health. ML algorithms are used 
to identify patterns in medical data (e.g., identifying early signs of diseases like cancer or Alzheimer’s), 
forecast patient outcomes, and assist in clinical decision-making. Predictive models can forecast 
disease progression, anticipate potential complications, or assess the risk of hospitalization. ML is also 
applied in drug development, genetic research, and personalized healthcare models by identifying 
effective treatments based on individual patient data. For example, ML models can predict the 
likelihood of heart attacks, detect anomalies in imaging scans, and recommend tailored treatment 
plans. 



      

5.3. Case studies for Life Sciences and Medical Applications 
Below is presented several projects regarding Life Science and Medical Application in which Catholic 
University of Valencia was involved. 

 DART (Diabetes- Augmented Reality Training) 

DART project aims to promote synergies between sport and health, promote inclusion in sports, promote 
health-enhancing physical activity for people with diabetes type I and II, encourage healthy lifestyles and 
raise awareness of the added value of sport and physical activity. DART objectives will be achieved through 
the design and implementation of innovative digital tools and training e-modules. Specifically, the DART 
project will develop and implement: a) an innovative, fun and eco-friendly Mobile app in 7 language versions 
using an Augmented reality Personal trainer teaching diabetic patients specialized physical exercises that 
will help reduce blood pressure, lower the levels of fats in the blood, keep the heart healthy, improve blood 
sugar levels and prevent excess weight gain. Also, the app will include geofence technology for outdoor 
activities, a customized calendar for inserting medicines, doctors' appointments, etc. and an insulin dose 
reminder; b) 30 interactive e-modules based on Moodle targeting Physical Education teachers including a 
series of Podcasts; c) Awareness raising Events (Multiplier and live streaming) targeting a wider audience of 
Diabetic patients (type I and II) and their families from all countries involved and above. 

 NONNA (aNalysing cOgnition through Natural laNguage in older Adults) 

NONNA is a research project exploring how spontaneous language use can reveal insights into 
cognitive abilities in older adults. By analyzing natural language patterns, the project aims to 
understand cognitive processes related to aging, ultimately leading to better detection and intervention 
strategies for cognitive decline. Real-world case studies involving elderly individuals to identify 
cognitive decline through voice interaction. Data collection focuses on speech patterns, response 
times, and linguistic complexity during interactions with the NONNA voice assistant. 

 BHR VLC (Brain Health and Resilience Valencia Challenge) 

A collaborative research and innovation proposal is underway to establish in Valencia an internationally 
recognized hub for the study of resilience and brain health. The challenge involves creating a people-
centered ecosystem of excellence, co-created and co-developed by participants. Coordinated from 
UCV (Catholic University of Valencia) and open to participation from universities within the Community, 
nationwide, and from other countries. This hub aims to bring together businesses, technological and 
innovation centers, as well as healthcare institutions. Moreover, neuromodulation is a pivotal 
component of this initiative, leveraging advanced techniques such as Transcranial Magnetic 
Stimulation (TMS). By integrating neuromodulation into our research framework, we aim to explore the 
direct modulation of brain activity to enhance resilience and promote brain health. 

 Walkable Cities Instruments 

This project, which increases physical activity in neighborhoods with low walkability levels, presents an 
important connection with the health of the city's coast, which extends through several interrelated 
aspects. By actively promoting a more active and healthier lifestyle among residents, we not only 
address the challenge of improving public health and reducing diseases related to physical inactivity 
but also generate beneficial indirect impacts on the coastal environment. Promoting physical activity 
leads to a decrease in motor vehicle use, which in turn reduces air pollution, a critical factor affecting 
air quality throughout the region, including coastal areas. This reduction in air pollution has positive 



      
effects on water quality and marine biodiversity by minimizing the entry of air pollutants into the aquatic 
environment. Furthermore, by encouraging people's connection with nature through outdoor physical 
activity, greater environmental awareness and more responsible care of coastal ecosystems are 
promoted, which contributes to their long-term preservation. In summary, the project not only seeks to 
improve the health and well-being of residents, but also aims to protect and conserve the natural 
coastal environment, thus creating a positive and sustainable impact on the health of Valencia's coast 

5.4. Comparison of Case Studies 

Tabel 3. Illustrates the tools and methods used in DART, NONNA, BHR VLC and Walkable Cities  

Case Study DART NONNA BHR VLC Walkable 
Cities 

Sensors 
Acelerometers, 
IMU, GPS, heart 

rate monitor 

Voice sensors 
(microphones 
embedded in 

devices) biometric 
sensors, heart 
rate and stress 
level monitor 

Non-invasive 
sensors, EEG 

devices, wearable 
sensors 

Environmental (e.g., 
light and noise 

levels). 

- 

IoT Devices Smartwatch, 
Cellular 

Azure-compatible 
smart speakers or 

microphones, 
Azure IoT Hub 

Wearable health 
monitors (e.g., 
smartwatches, 

fitness bands) and 
brain health devices 

(EEG headbands) 

- 

Data 
Transmission 

Cellular, Wi-Fi, or 
any internet 
conection 

Secure data 
transmission via 

Azure IoT Hub 
using MQTT, 

HTTPS, or AMQP 
protocols 

Wi-Fi, LoRaWAN, 
cellular networks 
for cloud-based 

transmission 

Wi-Fi, 
LoRaWAN, 

cellular 
networks for 
cloud-based 
transmission 

Data Storage 
and 

Processing 

Cloud storage 
(UCV forms and 

Cloud, Azure) for 
localized 

databases for 
infrastructure 

metadata 

Azure Cloud, 
Azure Cognitive 

Services, (Speech-
to-Text API and 

Text Analytics AP). 

Azure Data Lake, 
Azure SQL 
Database 

Cloud storage 
systems 
(Google) 

Simulation 
and Modelling - 

Natural Language 
Processing (NLP) 

models 

Brain health 
trajectory models - 

Machine 
Learning and 

Prediction 

AI algorithms using 
predictive models 
(Python, MATLAB) 

Azure machine 
learning 

AI algorithms using 
predictive models 
(Python, MATLAB) 

Linear and 
logistic 

regressions 
(SPSS) to 

predict physical 
activity (Python, 

MATLAB) 



      

6. Comparison of Tools between Built Environment, Agriculture and 
Life Sciences and Medical Applications 

Tool Built Environment Agriculture Life Sciences and Medical 
Applications 

Sensors 

Temperature, 
Occupancy, Humidity, 

Air Quality, Lighting, 
Pressure, 

Accelerometer 

Temperature, 
Humidity, pH 
Soil Moisture, 

Light, Camera, 
GPS tracker, 

LiDAR 

Optical, Piezoelectric, 
Temperature, Heart Rate, 

Accelerometer, GPS 

IoT devices 
Smart Meters for; 

Energy, Electricity, Gas, 
HVAC, Lighting 

Weather Station, 
Drones, Multispectral 

and Hyperspectral 
Cameras 

Smartwatch, Fitness 
Tracker, Smart Inhalers, 

Neurostimulators 

Data 
Transmission 

Cellular, Wi-Fi, 
LoRaWAN for low-power 

Cellular, Wi-Fi, 
LoRaWAN for low-

power 

Cellular, Wi-Fi, or any 
internet conection 

Data Storage 
and Processing 

Cloud storage (AWS, 
Azure, Siemens 

MindSphere, Hottinger 
Baldwin Messtechnik) 

Cloud Storage 
(Microsoft Cloud, 

Azure) for localized 
databases for 
infrastructure 

metadata 

Cloud storage (Microsoft 
Cloud, Azure) for localized 

databases for infrastructure 
metadata 

Simulation and 
Modelling    

Machine 
Learning and 

Prediction 

AI algorithms for 
predictive maintenance, 

Energy Efficiency, and 
Predictive Consumption 

Models (Python, 
MATLAB) 

AI algorithms for 
evaluation of climate 

data or soil 
conditions, prediction 

of growth and 

AI algorithms for predictive 
physical activity, more 
efficient exercises, and 

creating predictive models 
(Python, MATLAB) 

Table 4. Comparison between sectors of Built Environment, Agriculture, Life Sciences and Medical 
Applications 

The tools used in built environments, agriculture, and life sciences/medical applications all serve to 
enhance efficiency, optimize operations, and improve decision-making, but their specific technologies 
and applications differ due to the nature of each sector. In the built environment, sensors such as 
motion detectors, temperature, humidity, and air quality sensors are commonly used in smart buildings 
to monitor and control environmental conditions, while IoT devices help integrate these systems for 
real-time management. Data transmission tools like Wi-Fi, Zigbee, and LoRaWAN are widely used to 
connect IoT devices to centralized systems, and data storage is typically handled by cloud services, 
providing scalability and ease of access. In agriculture, sensors for soil moisture, temperature, light, 
and pH are used to monitor crops and optimize irrigation and fertilization. IoT devices in agriculture, 
such as GPS-guided tractors and drones, help collect large datasets that are transmitted via cellular or 
low-power wide-area networks (LPWAN). Data storage tools include both cloud and edge computing 
solutions for real-time analysis. AI and machine learning are applied for predictive analytics, crop yield 



      
forecasting, and pest detection. In life sciences and medical applications, sensors like ECG monitors, 
glucose sensors, and wearable health devices continuously collect health data from patients. IoT 
devices, including smart pacemakers and wearable fitness trackers, feed data to cloud-based 
platforms for integration and analysis. Data transmission tools in healthcare, like Bluetooth and 5G, 
ensure that real-time health data is transmitted securely. Data storage in the medical field involves 
robust, HIPAA-compliant systems, with both cloud storage and local medical records systems. AI and 
machine learning tools are heavily utilized for diagnostic purposes, predictive health analytics, and 
personalized treatment plans, helping to provide deeper insights and improve patient outcomes. 
Across all sectors, the synergy of sensors, IoT, data transmission, storage, and AI/ML tools is 
transforming how data is collected, processed, and used to drive decision-making and optimization.  

7. Models Used in Digital Twins 

In the context of Digital Twins, a Model refers to a digital representation or simulation of a physical 
object, system, or process. This model is created using data, algorithms, and various technologies to 
reflect the real-world counterpart as accurately as possible. Digital twins are used to simulate, monitor, 
and optimize physical assets, systems, or environments in real time. There are several types of models 
that are present in the creation of digital twins depending on the target area. The key roles of the models 
include simulation and testing, monitoring and diagnostics, optimization and prediction. For the built 
environment, agriculture and Life Sciences & Medical Applications the most common modeling 
technique used is Data-Driven/Predictive. 

7.1. Data-Driven/Predictive 

A data-driven model in the context of digital twins refers to a model that leverages large volumes of real-
time and historical data to simulate, analyze, and predict the behavior of physical assets or systems. 
Unlike traditional models that are based on predefined rules or physical principles (such as the physical 
model or behavioral model), data-driven models rely on data patterns, trends, and correlations 
extracted from sensors, monitoring systems, and other data sources to make predictions or inform 
decisions. 

A predictive model in the context of digital twins is a type of model that uses data-driven techniques 
(such as machine learning, statistical analysis, or other advanced analytics) to forecast future events 
or behaviors based on historical data, real-time inputs, and simulation results. It is designed to 
anticipate how a physical system or asset will behave in the future, allowing for better decision-making, 
proactive management, and optimized operations. 

In a digital twin framework, a data-driven model continuously receives and processes data from the 
physical asset or environment, and then uses this data to generate insights, identify trends, detect 
anomalies, or optimize performance. These models can learn and improve over time as they are fed 
more data, enabling more accurate forecasting and decision-making. A predictive data-driven model 
continuously integrates data from tools such as sensors, IoT devices, and other sources to simulate 
and predict the future performance or condition of the physical asset. This model can predict 
maintenance needs, energy consumption, equipment failures, or system performance under varying 
conditions. 



      

7.2. Gradient Boosting: A Mathematical Deep Dive  

One of the most important techniques used by forecasting models is gradient boosting. This method 
has been extensively applied in areas like regression, classification, and time-series forecasting due to 
its robustness and flexibility (Friedman, 2001). This technique is used extensively in models like 
Skforecast, XGBoost, LightGBM and CatBoost.  

In this section, we delve into the underline mathematics of the gradient boosting model, focusing on its 
theoretical framework, optimization process, and how it applies to real-world datasets, such as 
predicting electricity consumption. 

7.3. Problem Formulation 

The primary task is to be able to predict a quantity of interest, for instance, electricity 
consumption denoted by 𝑦𝑦 based on a set of input features 𝒙𝒙 = [𝑥𝑥1,𝑥𝑥2, … … , 𝑥𝑥𝑛𝑛], where 𝑥𝑥𝑖𝑖 is a vector 

defined by 𝑥𝑥𝑖𝑖 = �𝑥𝑥𝑖𝑖
𝑡𝑡1 ,𝑥𝑥𝑖𝑖

𝑡𝑡2 , … , 𝑥𝑥𝑖𝑖
𝑡𝑡𝑘𝑘�

𝑇𝑇
. Here 𝑥𝑥𝑖𝑖

𝑡𝑡𝑗𝑗 is the reading of feature 𝑥𝑥𝑖𝑖 at time 𝑡𝑡𝑗𝑗, representing potentially 
relevant influencing factors, such as: 

• 𝑥𝑥1: Past electricity usage data. 

• 𝑥𝑥2: Past humidity data.  

• 𝑥𝑥3: Past internal temperature.  

Thus, the feature matrix can be represented as: 

𝒙𝒙 = �
𝑥𝑥1
𝑡𝑡1 ⋯ 𝑥𝑥𝑛𝑛

𝑡𝑡1

⋮ ⋱ ⋮
𝑥𝑥1
𝑡𝑡𝑘𝑘 ⋯ 𝑥𝑥𝑛𝑛

𝑡𝑡𝑘𝑘
�, 

where 𝑛𝑛 is the number of different factors. Given this dataset 𝒙𝒙, our goal is to build a model 𝐹𝐹(𝒙𝒙) that 
minimizes the expected value of a loss function  𝐿𝐿(𝑦𝑦,𝐹𝐹(𝒙𝒙)), expressed as: 

𝐹𝐹∗(𝒙𝒙) = 𝑎𝑎𝑎𝑎𝑎𝑎min
𝐹𝐹
𝐸𝐸[𝐿𝐿(𝑦𝑦,𝐹𝐹(𝒙𝒙))], 

where the expectation 𝐸𝐸[∙] captures the overall error across the dataset (Hastie et al., 2009).  

For regression problems, common choices for L include: 

1. Squared Error Loss:  

𝐿𝐿(𝑦𝑦,𝐹𝐹) =
1
2

(𝑦𝑦 − 𝐹𝐹)2, 

commonly used in basic regression tasks. 

2. Absolute Error Loss: 

𝐿𝐿(𝑦𝑦,𝐹𝐹) = |𝑦𝑦 − 𝐹𝐹|, 

providing robustness to outliers but less smooth for optimization (James et al., 2013). 

3. Huber Loss (a robust alternative):  



      

𝐿𝐿(𝑦𝑦,𝐹𝐹) =  �

1
2

(𝑦𝑦 − 𝐹𝐹)2,         𝑖𝑖𝑖𝑖   |𝑦𝑦 − 𝐹𝐹| ≤ 𝛿𝛿 

𝛿𝛿 �|𝑦𝑦 − 𝐹𝐹| −
𝛿𝛿
2
� ,   𝑖𝑖𝑖𝑖      |𝑦𝑦 − 𝐹𝐹| > 𝛿𝛿

. 

This function is a combination of the Mean Squared Error (MSE) and Mean Absolute Error (MAE), 
behaving like MSE for small residuals and MAE for large residuals, (Huber, 1964). In the formula 
𝛿𝛿 is a threshold parameter that determines the switch between MSE and MAE behavior. The 
parameter 𝛿𝛿 needs to be tuned depending on the dataset. 

7.4. Stagewise Additive Modelling 

Gradient boosting builds the model 𝐹𝐹(𝒙𝒙) iteratively as a sum of simpler models (weak learners). At 
the mth iteration: 

𝐹𝐹𝑚𝑚(𝒙𝒙) = 𝐹𝐹𝑚𝑚−1(𝒙𝒙) + 𝜈𝜈 ℎ𝑚𝑚(𝒙𝒙) 

where: 

• 𝐹𝐹𝑚𝑚−1(𝒙𝒙): The model after m−1 iterations. 

• ℎ𝑚𝑚(𝒙𝒙): The weak learner at step m, often a decision tree. 

• 𝜈𝜈: Learning rate (0 < 𝜈𝜈 ≤ 1 ) controlling the contribution of ℎ𝑚𝑚(𝒙𝒙). 

If the initial model is denoted by 𝐹𝐹0(𝒙𝒙) then the above equation can be written as:  

𝐹𝐹𝑚𝑚(𝒙𝒙) = 𝐹𝐹0(𝒙𝒙) + �𝜈𝜈 ℎ𝑗𝑗(𝒙𝒙)
𝑚𝑚

𝑗𝑗=1

 

7.4.1. Weak Learner 

The term weak learner, denoted by ℎ𝑚𝑚(𝒙𝒙), refers to a simple model that performs slightly better than 
random guessing on the task at hand. In gradient boosting, weak learners are used as building blocks, 
and their predictions are combined iteratively to form a strong, highly accurate model, (Friedman, 
2001). 

The most common weak learners in gradient boosting are decision trees, specifically shallow 
trees (trees with limited depth, such as 1–5 levels). These shallow trees are also called stumps when 
the depth is just 1. Shallow trees are chosen because they are computationally efficient and reduce the 
risk of overfitting in each boosting step, (Breiman, 1996). 

Each weak learner is trained to approximate the residuals (errors) of the current model at that iteration. 
For instance, if the current model predicts 𝐹𝐹𝑚𝑚−1(𝒙𝒙) and the true value is 𝑦𝑦, the weak learner is trained 
to minimize the error: 

𝑟𝑟𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝐹𝐹𝑚𝑚−1(𝒙𝒙𝒊𝒊) 

This incremental approach ensures that each weak learner contributes to correcting the mistakes of 
the previous model, (Friedman, 2001). 

The use of Decision Trees is usually the common choice for weak learners as they are interpretable and 
handle non-linear relationships well, (Breiman, 1996). In addition, they do not require extensive 
preprocessing of data (e.g., feature scaling or normalization), (Quinlan, 1986). 



      
On their own, weak learners are not powerful enough to model complex patterns. However, gradient 
boosting leverages many of them sequentially to build a strong model. 

7.4.2. Learning Rate 𝝂𝝂 

The learning rate is a crucial hyperparameter in gradient boosting that controls the contribution of each 
weak learner to the overall model. The learning rate, denoted by 𝜈𝜈, is a scaling factor applied to the 
predictions of each weak learner. The updated model at step m becomes: 

𝐹𝐹𝑚𝑚(𝒙𝒙) = 𝐹𝐹𝑚𝑚−1(𝒙𝒙) + 𝜈𝜈 ℎ𝑚𝑚(𝒙𝒙), 

where ℎ𝑚𝑚(𝒙𝒙) is the weak learner’s prediction. 

A low learning rate reduces the impact of each weak learner, requiring more iterations for convergence. 
It also encourages finer adjustments, leading to better generalization but increased 
computation, (Hastie et al., 2009). On the other hand, a high learning rate increases the impact of each 
weak learner, potentially allowing faster convergence. However, it risks overfitting, as the model may 
overreact to individual weak learners' errors, (Friedman, 2001). 

In practice, learning rates like 𝜈𝜈 = 0.1  or 𝜈𝜈 = 0.01 are commonly used. The optimal choice depends on 
the dataset and the complexity of the problem, (Friedman, 2001). 

7.4.3. Loss Function and Negative Gradient 

The key idea of gradient boosting is to optimize the loss function 𝐿𝐿(𝑦𝑦,𝐹𝐹) by adding weak 
learners, ℎ𝑚𝑚(𝒙𝒙), that fit the negative gradient of the loss function at  𝐹𝐹𝑚𝑚(𝒙𝒙), (Friedman, 2001). This is the 
key step in the gradient boosting algorithm. 

To begin with, the residuals (errors) are defined mathematically as: 

𝑟𝑟𝑖𝑖𝑖𝑖 = −�
𝜕𝜕𝜕𝜕(𝑦𝑦𝑖𝑖 ,𝐹𝐹)

𝜕𝜕𝜕𝜕
�
𝐹𝐹=𝐹𝐹𝑚𝑚−1(𝒙𝒙𝒊𝒊)

. 

Here 𝑟𝑟𝑖𝑖𝑖𝑖 represents the residuals, which act as pseudo-responses that will guide the weak 
learner ℎ𝑚𝑚(𝒙𝒙), (Breiman, 1996). 

7.4.3.1. Squared Error Loss 

As mentioned earlier, a common choice of loss function for regression problems is squared error loss, 
which is given by: 

𝐿𝐿(𝑦𝑦,𝐹𝐹) =
1
2

(𝑦𝑦 − 𝐹𝐹)2. 

The gradient of the squared error loss with respect to the model output 𝐹𝐹 is: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐹𝐹 − 𝑦𝑦 

Thus, the residuals become: 

𝑟𝑟𝑖𝑖𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝐹𝐹𝑚𝑚−1(𝒙𝒙𝒊𝒊), 

which represents the error between the true value 𝑦𝑦𝑖𝑖  and the current prediction 𝐹𝐹𝑚𝑚−1(𝒙𝒙𝒊𝒊). At each 
iteration, the weak learner ℎ𝑚𝑚(𝒙𝒙) is trained to fit these residuals (Friedman, 2001). 



      

7.4.3.2. Absolute Error Loss 

Another option for the loss function is absolute error loss, which is defined as: 

𝐿𝐿(𝑦𝑦,𝐹𝐹) = |𝑦𝑦 − 𝐹𝐹|. 

 The gradient of the absolute error loss with respect to the model output 𝐹𝐹 is: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐹𝐹 − 𝑦𝑦), 

where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐹𝐹 − 𝑦𝑦) is the sign function, which returns 1 if 𝐹𝐹 − 𝑦𝑦 > 0, and -1 if 𝐹𝐹 − 𝑦𝑦 < 0. 

Thus, the residuals become: 

𝑟𝑟𝑖𝑖𝑖𝑖 = −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐹𝐹𝑚𝑚−1(𝒙𝒙𝒊𝒊) − 𝑦𝑦𝑖𝑖) 

These residuals will guide the weak learner in the subsequent iteration, helping the model focus on the 
areas with the most error, (James et al., 2013). 

7.4.3.3. Weak Learners and Tree Structure 

In gradient boosting, weak learners are typically decision trees, (Quinlan, 1986). Each tree partitions the 

feature space ℝ𝑛𝑛 into 𝐽𝐽 regions �𝑅𝑅𝑗𝑗𝑚𝑚�𝑗𝑗=1
𝐽𝐽

. For a sample 𝒙𝒙, the prediction from the tree at iteration m is 

given by: 

ℎ𝑚𝑚(𝒙𝒙) = �𝛾𝛾𝑗𝑗𝑚𝑚 1�𝑥𝑥∈𝑅𝑅𝑗𝑗𝑚𝑚�

𝑱𝑱

𝒋𝒋=𝟏𝟏

 

where: 

• 1�𝑥𝑥∈𝑅𝑅𝑗𝑗𝑚𝑚� is an indicator function that equals 1 if 𝑥𝑥 belongs to region 𝑅𝑅𝑗𝑗𝑚𝑚, and 0 otherwise. 

• 𝛾𝛾𝑗𝑗𝑚𝑚 is the value predicted for region 𝑅𝑅𝑗𝑗𝑚𝑚. 

To find 𝛾𝛾𝑗𝑗𝑚𝑚, we minimize the loss over all samples in region 𝑅𝑅𝑗𝑗𝑚𝑚. This involves solving the following 
optimization problem: 

𝛾𝛾𝑗𝑗𝑚𝑚 = 𝑎𝑎𝑎𝑎𝑎𝑎min
𝛾𝛾

� 𝐿𝐿(𝑦𝑦𝑖𝑖 ,𝐹𝐹𝑚𝑚−1(𝒙𝒙𝜾𝜾) + 𝛾𝛾)
𝒙𝒙𝜾𝜾∈𝑅𝑅𝑗𝑗

𝑚𝑚

 

For the squared error loss, the optimal 𝛾𝛾𝑗𝑗𝑚𝑚 is the mean of the residuals in the region 𝑅𝑅𝑗𝑗𝑚𝑚: 

𝛾𝛾𝑗𝑗𝑚𝑚 =
∑ (𝑦𝑦𝑖𝑖−𝐹𝐹𝑚𝑚−1(𝒙𝒙𝜾𝜾))𝒙𝒙𝜾𝜾∈𝑅𝑅𝑗𝑗

𝑚𝑚

∑ 1𝒙𝒙𝜾𝜾∈𝑅𝑅𝑗𝑗
𝑚𝑚

. 

This ensures that each weak learner (decision tree) fits the residuals in each region of the feature space 
optimally (Friedman, 2001). 

For the absolute error loss, the optimal 𝛾𝛾𝑗𝑗𝑚𝑚 is the median of the residuals in the region 𝑅𝑅𝑗𝑗𝑚𝑚, not the mean 
as in the squared error case. This is because the median minimizes the sum of absolute deviations. 

Formally: 

𝛾𝛾𝑗𝑗𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 �𝑦𝑦𝑖𝑖 − 𝐹𝐹𝑚𝑚−1(𝒙𝒙𝜾𝜾)�,    ∀  𝒙𝒙𝜾𝜾 ∈ 𝑅𝑅𝑗𝑗𝑚𝑚. 



      
For absolute error loss, the optimization objective is non-differentiable at the residual zero-crossings, 
but the minimum occurs at the point where the sum of positive deviations equals the sum of negative 
deviations. This balancing point is precisely the median of the residuals, (Hastie, 2009). 

7.4.4. Final Model 

After M iterations, the final model is expressed by: 

𝐹𝐹𝑀𝑀(𝒙𝒙) = 𝐹𝐹0(𝒙𝒙) + � 𝜈𝜈 ℎ𝑚𝑚(𝒙𝒙)
𝑀𝑀

𝑚𝑚=1

 

This model combines predictions from all weak learners. 

7.4.5. Algorithm Outline 

For clarity, here’s the full algorithm for gradient boosting: 

1. Initialize: Set 𝐹𝐹0(𝒙𝒙) = 𝑎𝑎𝑎𝑎𝑎𝑎min
𝛾𝛾
∑ 𝐿𝐿(𝑦𝑦𝑖𝑖 , 𝛾𝛾)𝑛𝑛
𝑖𝑖=1  

2. Iterate for m=1,…,M: 

• Compute residuals: 

𝑟𝑟𝑖𝑖𝑖𝑖 = −�
𝜕𝜕𝜕𝜕(𝑦𝑦𝑖𝑖 ,𝐹𝐹)

𝜕𝜕𝜕𝜕
�
𝐹𝐹=𝐹𝐹𝑚𝑚−1(𝒙𝒙𝒊𝒊)

 

• Fit a weak learner ℎ𝑚𝑚(𝒙𝒙) to the residuals 𝑟𝑟𝑖𝑖𝑖𝑖. 

• Optimize the weak learner’s predictions 𝛾𝛾𝑗𝑗𝑚𝑚. 

• Update the model: 

𝐹𝐹𝑚𝑚(𝒙𝒙) = 𝐹𝐹𝑚𝑚−1(𝒙𝒙) + 𝜈𝜈 ℎ𝑚𝑚(𝒙𝒙), 

3. Final Model 

After M iterations the final model is: 

𝐹𝐹𝑀𝑀(𝒙𝒙) = 𝐹𝐹0(𝒙𝒙) + � 𝜈𝜈 ℎ𝑚𝑚(𝒙𝒙)
𝑀𝑀

𝑚𝑚=1

 

7.4.6. Practical Application to Electricity Prediction 

Dataset 

• Influencing factors: 𝒙𝒙𝒊𝒊 = [past electricity usage,  humidity,  temperature,  etc. ] 

• Target: 𝑦𝑦𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

Model Training 

1. Initialization: Start with a constant model: 

𝐹𝐹0(𝒙𝒙) = 𝑎𝑎𝑎𝑎𝑎𝑎min
𝛾𝛾
�𝐿𝐿(𝑦𝑦𝑖𝑖 , 𝛾𝛾)
𝑛𝑛

𝑖𝑖=1

= 𝑎𝑎𝑎𝑎𝑎𝑎min
𝛾𝛾
�(𝑦𝑦𝑖𝑖 − 𝛾𝛾)2 =

1
𝑛𝑛

𝑛𝑛

𝑖𝑖=1

�𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

  



      
2. Iteration: At each step, compute residuals 𝑟𝑟𝑖𝑖𝑖𝑖 and fit a decision tree ℎ𝑚𝑚(𝒙𝒙). For example, if 𝑦𝑦𝑖𝑖 =

52 and 𝐹𝐹𝑚𝑚−1(𝒙𝒙𝒊𝒊) = 44, the residual is 𝑟𝑟𝑖𝑖𝑖𝑖 = 8. 

3. Prediction: After training M iterations, the model predicts: 

𝐹𝐹𝑀𝑀(𝒙𝒙) = 𝐹𝐹0(𝒙𝒙) + � 𝜈𝜈 ℎ𝑚𝑚(𝒙𝒙)
𝑀𝑀

𝑚𝑚=1

 

8. Examples of Digital Twin models under development at the widening 
EU-CONEXUS partners with replicability potential towards the 
associated partners 

Between widening partners were identified two projects regarding Digital Twin, NetZeRoCities, in which 
Technical University of Civil Engineering of Bucharest is involved and SmartLivingEPC project, Frederik 
University being part of the research. 

8.1. NetZeRoCities 
NetZeRoCities project identifies several tools and technologies related to digital twin development, 
particularly in the context of the EFdeN building. The following tools can be transferred and replicated 
for digital twin technologies: 

1. IES VE (Integrated Environmental Solutions Virtual Environment): This simulation platform 
is used to analyse and optimize the energy performance of buildings. It allows users to create a 
3D digital model of a building and assess its performance under various conditions. The 
software integrates multiple modules for energy use calculation, cost analysis, and life cycle 
analysis. 

2. IES iScan: This intelligent solution manages building data to reduce consumption and carbon 
emissions. It centralizes data from various sources, including Building Management Systems 
(BMS), utility meters, and sensors, facilitating the analysis and interpretation of energy 
consumption and indoor comfort data. iScan also enables the creation of Digital Twins for 
simulating future scenarios and assessing retrofit options. 

3. Machine Learning Models: The document discusses the integration of machine learning 
algorithms for monitoring, functionality optimization, simulation, diagnosis, and predictive 
maintenance. Specific models mentioned include Isolation Forest for anomaly detection and 
Deep Q-Learning for optimizing HVAC system control. 

4. Data Visualization and Analysis Tools: The iSCAN platform provides capabilities for visualizing 
data, creating perspectives for analysis, and generating insights from the analysed data. It 
allows for the import of measured data and the application of machine learning models to 
assess building energy performance  

These tools collectively support the creation, management, and optimization of digital twins, making 
them suitable for replication in other projects focused on energy efficiency and sustainability in 
buildings. 



      
The model identified refers to the Digital Twin created for the EFdeN building project. This Digital Twin 
serves as a virtual representation of the physical building, allowing for the simulation and analysis of its 
behaviour, performance, and interactions with various environmental factors. The model integrates 
real-time data collected from sensors installed throughout the building, enabling continuous 
monitoring and optimization of its operations. 

8.2. SmartLivingEPC 
In the context of the SmartLivingEPC project, the model identified refers to the digital twin application 
that simulates the energy usage, environmental impact, and operational efficiency of buildings, 
particularly in coastal zones. This model is designed to improve sustainability practices and reduce 
carbon footprints by considering the unique microclimate and environmental conditions of coastal 
areas, such as high humidity and varying temperature gradients. 

The tools for digital twin technologies identified in the "SmartLivingEPC Project Overview" document 
include: 

1. Building Information Modeling (BIM) Software: This software is essential for comprehensive 
architectural and engineering design, serving as a foundational tool for creating detailed virtual 
models of buildings. 

2. Digital Twin Platforms: These platforms enable real-time building performance simulation, 
allowing for the dynamic representation of the physical systems. 

3. IoT Devices: These devices are crucial for granular data collection, capturing a wide range of 
environmental and operational parameters necessary for the digital twin's functionality. 

4. Smart Sensors: Capable of monitoring various conditions, smart sensors provide the data 
needed to inform the digital twin's operations and performance assessments. 

5. Data Analytics and Visualization Software: This software is necessary for interpreting 
complex datasets generated by the digital twin, facilitating informed decision-making. 

6. Machine Learning Algorithms: These algorithms are utilized for predictive analytics and 
optimization of energy consumption, enhancing the digital twin's capabilities. 

7. Integration Platforms: These platforms facilitate seamless communication between BIM, 
digital twins, IoT data streams, and smart sensors, ensuring cohesive operation. 

8. Big Data Management Solutions: These solutions are essential for handling the volume, 
velocity, and variety of data generated by the digital twin technologies. 

These tools can be transferred and replicated in other projects aiming to implement digital twin 
technologies, particularly in the context of building sustainability and energy performance analysis. 

 

 

 

 



      

9. Selection of Digital Twin models identified at non-widening EU-
CONEXUS partners with replicability potential towards the widening 
partners 

Non-widening universities shared their initiatives toward Digital Twin models, many of which are still in 
the incipient phase. Each project aims to create a comprehensive digital representation that integrates 
real-time data, simulations, and predictive analytics to inform decision-making and promote 
sustainable practices 

9.1. Urban & Coastal Lab La Rochelle 
The Urban & Coastal Lab La Rochelle (UCLR) project, in which La Rochelle University is part of, is 
developing an open-source web platform that is based on interoperability standards, which serves as a 
tool for digital twin technologies. The specific tools identified in the document that can be transferred 
and replicated include: 

1. Open-source Web Platform: This platform will facilitate the sharing, preservation, citation, and 
exploration of research data, models, and digital tools. 

2. Catalog Service: This service will allow users to share and manage research data and models 
effectively. 

3. TERREZE Data Platform: An upgraded version of this platform will provide analytics services 
on-demand, enabling the processing and interpretation of coastal data for various scientific, 
research, and application purposes. 

These tools are designed to support the collection and management of data, which is crucial for the 
effective implementation of digital twin technologies, particularly in the context of sustainable 
management of coastal territories as outlined in the project. The emphasis on interoperability and 
open-source development also suggests that these tools can be adapted for use in other contexts 
beyond the UCLR project, making them replicable and transferable.  

The status of the UCLR project, indicates that it is currently in the development phase. The project is 
focused on establishing a platform for collecting and formatting data and models, which is part of a 
broader initiative to create a common data management policy within La Rochelle University. In the 
short term, the emphasis is on developing the platform and pooling data around various case studies 
to demonstrate its utility. 

Additionally, there are plans for a longer-term development that includes the creation of scientific tools 
for analysis, simulation, and integration of data and models, with a specific focus on incorporating 
digital twins.  

In the context of the UCLR project, the model identified pertains to the establishment of a platform 
dedicated to pooling, exploiting, and valorising data, models, and digital tools from various research 
laboratories at La Rochelle University. The project emphasizes the development of scientific tools that 
will analyse, simulate, and integrate data and models, particularly focusing on the incorporation of 
digital twins. 

 



      

9.2. smartSE 
In the context of the smartSE initiative, project that Soth East Technological University was part of, the 
model associated with digital twins relies on creating a smart city experimental facility. The smartSE 
facility aims to serve as a living lab that leverages high-quality, reliable data to simulate and optimize 
urban systems and processes. The specific tools identified in the document that can be transferred and 
replicated include: 

1. Data Analytic Services: This offering includes advanced technology and analytical platforms 
that can be utilized to process real-time data and support the creation and management of 
digital twins. 

2. Smart City Experimental Sandbox: This environment allows for testing concepts using 
regional data, which can be instrumental in simulating and optimizing the physical systems 
represented by digital twins. 

3. Innovation Imaginarium: This design-led program fosters startup creation, which may involve 
the development of new tools and technologies applicable to digital twin applications. 

4. Data Platform: This platform facilitates data trading and sharing, which is essential for the 
effective functioning of digital twins, as they rely on accurate and timely data from various 
sources. 

These components from the smartSE initiative can be transferred and replicated to support the 
development of digital twin technologies in other contexts, particularly in smart city applications. The 
focus on data, innovation, and collaboration within the project enhances the potential for creating 
effective digital twin solutions.  

SmartSE highlights several key aspects that relate to the concept of a model in digital twins: 

1. Data-Driven Approach: The smartSE initiative focuses on utilizing data to inform decision-
making and enhance public service, which is essential for creating accurate digital 
representations of physical systems. 

2. Collaboration and Co-Creation: The project emphasizes co-creation across various 
stakeholders, including local government, private enterprises, and citizens. This collaborative 
approach is vital for developing comprehensive models that accurately reflect the complexities 
of urban systems. 

3. Focus on Sustainability: The smartSE initiative aims to address sustainability challenges 
through data-driven insights, which suggests that the models developed will incorporate 
environmental factors and performance metrics relevant to sustainability goals. 

4. Experimental Laboratories: The facility offers experimental laboratories where new 
processes, products, and business ideas can be tested. This aspect indicates that 
mathematical models will likely be employed to simulate the behaviour of these innovations in 
a controlled environment. 

9.3. Cúpla Trá 
Cúpla Trá, project that Soth East Technological University was part of, employs digital twin technology 
for environmental analysis in a coastal region of County Waterford, Ireland. several functionalities and 



      
methodologies that can be considered as tools or components of the digital twin framework are 
identified: 

1. Digital Twin Platform: The project aims to develop and implement a digital twin platform that 
maps the current and natural environment of the area. This platform will integrate various 
datasets, which suggests the use of software tools for data integration and visualization. 

2. Data Integration Tools: The project will incorporate existing environmental datasets and socio-
economic data from various sources, indicating the need for tools that can aggregate and 
harmonize data from different governing bodies and organizations. 

3. Predictive Analysis Tools: The document mentions the ability to conduct predictive analysis of 
the inter-dependent factors affecting the environment. This implies the use of analytical tools 
capable of modeling and simulating different scenarios based on the integrated data. 

4. Interactive “Mission Room”: The project includes an immersive, interactive space for 
stakeholder awareness and participation, which suggests the use of visualization and 
simulation tools that allow users to interact with the digital twin in a meaningful way. 

5. Monitoring Tools: The document references the importance of monitoring greenhouse gases 
and river health, indicating the need for real-time data processing and monitoring tools that can 
track environmental changes and impacts. 

In the context of the "Cúpla Trá" project, the model identified refers to the digital twin platform that aims 
to create a comprehensive and holistic representation of the coastal region in County Waterford, 
Ireland. This model is designed to simulate and analyze both human and non-human behavioral 
patterns and interactions within the environment. 

9.4. Evolve-Evalue 
UCV Evolve-Evalue aims to combine two digital twins for medical training. It utilizes the CAE Maestro 
Evolve platform for interactive simulations with virtual patients and an evaluation tool for assessing 
student performance. The goal is to enhance medical education and training through realistic 
simulations and assessments. 

The tools for digital twin technologies identified in the project include: 

1. CAE Maestro Evolve Software: This software serves as an interactive virtual learning platform 
that facilitates medical training and content development. It allows for the creation of virtual 
patients and medical equipment, as well as the implementation of various teaching tools and 
pre-programmed Simulated Clinical Experiences (SCEs). However, it is noted that the current 
access is in demonstration mode, which limits its use. 

2. UCV Evalua Application: This application is developed specifically for the university and 
includes a pool of approximately 500 questions for evaluating student performance. It allows 
teachers to organize pre- and post-simulation exams, customizing the number and difficulty of 
questions based on an extensive question pool. 

These tools can be transferred and replicated in other contexts by adapting the software and 
application functionalities to meet the specific needs of different educational or training environments, 
particularly in medical training. The integration of these tools can enhance the simulation and 



      
evaluation processes in various settings. 

The model identified pertains to the digital twin for medical simulation training. Specifically, it involves 
the CAE Maestro Evolve platform, which serves as an interactive virtual learning environment. This 
model allows for the creation of virtual patients, where various pathologies and physiological 
responses can be assigned and altered based on student interactions. 

Despite the promising benefits, the projects also highlight common challenges, such as the complexity 
of data integration, the need for robust infrastructure, and the importance of stakeholder collaboration. 
Collectively, these initiatives underscore the necessity of interdisciplinary approaches and innovative 
solutions to address the multifaceted challenges faced by coastal and urban areas, ultimately aiming 
for improved decision-making and sustainable development. 

10. Conclusion 

For Digital Twins, tools used regarding sectors of built environment, agriculture, life sciences, and 
medical applications are generally of the same six types. Sensors, IoT devices, Data transmission, Data 
storage and processing, Simulation and modelling, Machine Learning and Prediction. The main 
difference between the sectors are the usage of specific sensors and IoT devices depending on the 
desired type of information that is to be collected (building parameters, soil data, biological signals). 
When it comes to data transmission and storage, all sectors use a mix between cellular, Wi-Fi and 
LoRaWAN for transmission and cloud-based platforms for storage and processing purposes. Cloud-
based platforms are popular in digital twin applications in all sectors due to their scalability, real-time 
data access, and ability to integrate various systems and stakeholders. These platforms can efficiently 
handle large volumes of data generated by sensors and IoT devices, storing, processing, and analyzing 
it in a centralized location. Usage of Python and MATLAB is seen to be very common in Machine Learning 
and Prediction for all sectors. The focus of machine learning and prediction in digital twin applications 
is centered on specific areas for different industries. In the built environment, it is primarily aimed at 
predictive maintenance, optimizing asset lifespan and reducing downtime. For agriculture, the focus is 
on growth prediction and soil concentration to enhance crop yields and monitor soil health. In life 
sciences and medical applications, machine learning is used to predict physical activity and monitor 
biological parameters, enabling personalized healthcare and early detection of medical conditions.  

For interdisciplinary research, PhD candidates can be encouraged to pursue interdisciplinary research 
that spans across the built environment, agriculture, life sciences, and medical applications. For 
instance, a PhD candidate could work on developing advanced machine learning algorithms for 
predictive maintenance in the built environment, while also exploring their applications in healthcare 
for predictive physical activity or biological parameter monitoring. Cotutelle programs can be 
structured to encourage candidates to work at the intersection of multiple sectors. For example, a joint 
program between universities in engineering and life sciences could allow students to develop and 
apply IoT and sensor technologies for both smart buildings and health diagnostics, fostering cross-
disciplinary expertise. 

Regarding sensors and IoT devices, PhD candidates could work on the development and optimization 
of sensors and IoT devices, with a focus on their specific applications in various sectors. For example, 



      
a student might research sensor innovations for agriculture (e.g., for soil concentration and growth 
prediction) or medical devices that track biological signals. 

Cotutelle programs could encourage research on sensor technologies that can be applied universally 
across sectors but tailored to the needs of each (e.g., sensors for environmental monitoring in 
agriculture and built environments or wearable health-monitoring devices). 

When predictive technologies and innovation is considered, growth prediction, and biological 
parameter monitoring are central themes in all sectors, PhD candidates could develop innovative 
predictive technologies using machine learning, IoT, and simulation models to improve accuracy and 
functionality. For example, a focus on predictive analytics to anticipate equipment failure in the built 
environment or predictive health monitoring in medical applications could significantly advance these 
fields. Students in cotutelle programs can focus on predictive technologies that can be adapted across 
sectors, fostering innovation that could lead to global breakthroughs in healthcare, agriculture, and 
infrastructure management. 
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